Bottou, Léon
Memory Mosaics
Zhang, Jianyu, Nolte, Niklas, Sadhukhan, Ranajoy, Chen, Beidi, Bottou, Léon
This paper presents a learning system architecture, Memory Mosaics, in which multiple associative memories work in concert to carry out a prediction task of interest. Such systems are closely related to memory networks [Weston et al., 2014, Sukhbaatar et al., 2015] and resemble transformers [Vaswani et al., 2017] despite significant differences. Like transformers, Memory Mosaics possesses some of the disentanglement and compositional capabilities that have long eluded machine learning systems [Lake and Baroni, 2018]. Unlike transformers whose internal mechanism are hard to decipher [Olsson et al., 2022, Bietti et al., 2024], Memory Mosaics achieve these capabilities in comparatively transparent ways. The three main contributions of this work are (a) recognizing and exploiting a similarity between smoothing associative memories and self-attention, (b) identifying and illustrating the predictive disentanglement principle which explains how training decomposes the overall task in interesting ways, and (c) showing that this comparatively transparent architecture matches the performance of decoding transformers on a language modeling task. Section 2 describes the basic architecture and outlines its consequences. Section 3 illustrates the predictive disentanglement principle. Section 4 extends these ideas to fully formed memory mosaics.
Fine-tuning with Very Large Dropout
Zhang, Jianyu, Bottou, Léon
It is impossible today to pretend that the practice of machine learning is compatible with the idea that training and testing data follow the same distribution. Several authors have recently used ensemble techniques to show how scenarios involving multiple data distributions are best served by representations that are both richer than those obtained by regularizing for the best in-distribution performance, and richer than those obtained under the influence of the implicit sparsity bias of common stochastic gradient procedures. This contribution investigates the use of very high dropout rates instead of ensembles to obtain such rich representations. Although training a deep network from scratch using such dropout rates is virtually impossible, fine-tuning a large pre-trained model under such conditions is not only possible but also achieves out-of-distribution performances that exceed those of both ensembles and weight averaging methods such as model soups. This result has practical significance because the importance of the fine-tuning scenario has considerably grown in recent years. This result also provides interesting insights on the nature of rich representations and on the intrinsically linear nature of fine-tuning a large network using a comparatively small dataset.
Borges and AI
Bottou, Léon, Schölkopf, Bernhard
Many believe that Large Language Models (LLMs) open the era of Artificial Intelligence (AI). Some see opportunities while others see dangers. Yet both proponents and opponents grasp AI through the imagery popularised by science fiction. Will the machine become sentient and rebel against its creators? Will we experience a paperclip apocalypse? Before answering such questions, we should first ask whether this mental imagery provides a good description of the phenomenon at hand. Understanding weather patterns through the moods of the gods only goes so far. The present paper instead advocates understanding LLMs and their connection to AI through the imagery of Jorge Luis Borges, a master of 20th century literature, forerunner of magical realism, and precursor to postmodern literature. This exercise leads to a new perspective that illuminates the relation between language modelling and artificial intelligence.
Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization
Ramé, Alexandre, Ahuja, Kartik, Zhang, Jianyu, Cord, Matthieu, Bottou, Léon, Lopez-Paz, David
Foundation models are redefining how AI systems are built. Practitioners now follow a standard procedure to build their machine learning solutions: from a pre-trained foundation model, they fine-tune the weights on the target task of interest. So, the Internet is swarmed by a handful of foundation models fine-tuned on many diverse tasks: these individual fine-tunings exist in isolation without benefiting from each other. In our opinion, this is a missed opportunity, as these specialized models contain rich and diverse features. In this paper, we thus propose model ratatouille, a new strategy to recycle the multiple fine-tunings of the same foundation model on diverse auxiliary tasks. Specifically, we repurpose these auxiliary weights as initializations for multiple parallel fine-tunings on the target task; then, we average all fine-tuned weights to obtain the final model. This recycling strategy aims at maximizing the diversity in weights by leveraging the diversity in auxiliary tasks. Empirically, it improves the state of the art on the reference DomainBed benchmark for out-of-distribution generalization. Looking forward, this work contributes to the emerging paradigm of updatable machine learning where, akin to open-source software development, the community collaborates to reliably update machine learning models. Our code is released: https://github.com/facebookresearch/ModelRatatouille.
Learning useful representations for shifting tasks and distributions
Zhang, Jianyu, Bottou, Léon
Does the dominant approach to learn representations (as a side effect of optimizing an expected cost for a single training distribution) remain a good approach when we are dealing with multiple distributions? Our thesis is that such scenarios are better served by representations that are richer than those obtained with a single optimization episode. We support this thesis with simple theoretical arguments and with experiments utilizing an apparently na\"{\i}ve ensembling technique: concatenating the representations obtained from multiple training episodes using the same data, model, algorithm, and hyper-parameters, but different random seeds. These independently trained networks perform similarly. Yet, in a number of scenarios involving new distributions, the concatenated representation performs substantially better than an equivalently sized network trained with a single training run. This proves that the representations constructed by multiple training episodes are in fact different. Although their concatenation carries little additional information about the training task under the training distribution, it becomes substantially more informative when tasks or distributions change. Meanwhile, a single training episode is unlikely to yield such a redundant representation because the optimization process has no reason to accumulate features that do not incrementally improve the training performance.
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Słowik, Agnieszka, Bottou, Léon
Machine learning systems based on minimizing average error have been shown to perform inconsistently across notable subsets of the data, which is not exposed by a low average error for the entire dataset. In consequential social and economic applications, where data represent people, this can lead to discrimination of underrepresented gender and ethnic groups. Given the importance of bias mitigation in machine learning, the topic leads to contentious debates on how to ensure fairness in practice (data bias versus algorithmic bias). Distributionally Robust Optimization (DRO) seemingly addresses this problem by minimizing the worst expected risk across subpopulations. We establish theoretical results that clarify the relation between DRO and the optimization of the same loss averaged on an adequately weighted training dataset. The results cover finite and infinite number of training distributions, as well as convex and non-convex loss functions. We show that neither DRO nor curating the training set should be construed as a complete solution for bias mitigation: in the same way that there is no universally robust training set, there is no universal way to setup a DRO problem and ensure a socially acceptable set of results. We then leverage these insights to provide a mininal set of practical recommendations for addressing bias with DRO. Finally, we discuss ramifications of our results in other related applications of DRO, using an example of adversarial robustness. Our results show that there is merit to both the algorithm-focused and the data-focused side of the bias debate, as long as arguments in favor of these positions are precisely qualified and backed by relevant mathematics known today.
WNGrad: Learn the Learning Rate in Gradient Descent
Wu, Xiaoxia, Ward, Rachel, Bottou, Léon
Adjusting the learning rate schedule in stochastic gradient methods is an important unresolved problem which requires tuning in practice. If certain parameters of the loss function such as smoothness or strong convexity constants are known, theoretical learning rate schedules can be applied. However, in practice, such parameters are not known, and the loss function of interest is not convex in any case. The recently proposed batch normalization reparametrization is widely adopted in most neural network architectures today because, among other advantages, it is robust to the choice of Lipschitz constant of the gradient in loss function, allowing one to set a large learning rate without worry. Inspired by batch normalization, we propose a general nonlinear update rule for the learning rate in batch and stochastic gradient descent so that the learning rate can be initialized at a high value, and is subsequently decreased according to gradient observations along the way. The proposed method is shown to achieve robustness to the relationship between the learning rate and the Lipschitz constant, and near-optimal convergence rates in both the batch and stochastic settings ($O(1/T)$ for smooth loss in the batch setting, and $O(1/\sqrt{T})$ for convex loss in the stochastic setting). We also show through numerical evidence that such robustness of the proposed method extends to highly nonconvex and possibly non-smooth loss function in deep learning problems.Our analysis establishes some first theoretical understanding into the observed robustness for batch normalization and weight normalization.
On the Convergence of Adam and Adagrad
Défossez, Alexandre, Bottou, Léon, Bach, Francis, Usunier, Nicolas
We provide a simple proof of the convergence of the optimization algorithms Adam and Adagrad with the assumptions of smooth gradients and almost sure uniform bound on the $\ell_\infty$ norm of the gradients. This work builds on the techniques introduced by Ward et al. (2019) and extends them to the Adam optimizer. We show that in expectation, the squared norm of the objective gradient averaged over the trajectory has an upper-bound which is explicit in the constants of the problem, parameters of the optimizer and the total number of iterations N. This bound can be made arbitrarily small. In particular, Adam with a learning rate $\alpha=1/\sqrt{N}$ and a momentum parameter on squared gradients $\beta_2=1 - 1/N$ achieves the same rate of convergence $O(\ln(N)/\sqrt{N})$ as Adagrad. Thus, it is possible to use Adam as a finite horizon version of Adagrad, much like constant step size SGD can be used instead of its asymptotically converging decaying step size version.
Symplectic Recurrent Neural Networks
Chen, Zhengdao, Zhang, Jianyu, Arjovsky, Martin, Bottou, Léon
We propose Symplectic Recurrent Neural Networks (SRNNs) as learning algorithms that capture the dynamics of physical systems from observed trajectories. An SRNN models the Hamiltonian function of the system by a neural network and furthermore leverages symplectic integration, multiple-step training and initial state optimization to address the challenging numerical issues associated with Hamiltonian systems. We show SRNNs succeed reliably on complex and noisy Hamiltonian systems. We also show how to augment the SRNN integration scheme in order to handle stiff dynamical systems such as bouncing billiards.
Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed
Défossez, Alexandre, Usunier, Nicolas, Bottou, Léon, Bach, Francis
We study the problem of source separation for music using deep learning with four known sources: drums, bass, vocals and other accompaniments. State-of-the-art approaches predict soft masks over mixture spectrograms while methods working on the waveform are lagging behind as measured on the standard MusDB benchmark. Our contribution is two fold. (i) We introduce a simple convolutional and recurrent model that outperforms the state-of-the-art model on waveforms, that is, Wave-U-Net, by 1.6 points of SDR (signal to distortion ratio). (ii) We propose a new scheme to leverage unlabeled music. We train a first model to extract parts with at least one source silent in unlabeled tracks, for instance without bass. We remix this extract with a bass line taken from the supervised dataset to form a new weakly supervised training example. Combining our architecture and scheme, we show that waveform methods can play in the same ballpark as spectrogram ones.