Goto

Collaborating Authors

 Boscaini, Davide


Revisiting Fully Convolutional Geometric Features for Object 6D Pose Estimation

arXiv.org Artificial Intelligence

Recent works on 6D object pose estimation focus on learning keypoint correspondences between images and object models, and then determine the object pose through RANSAC-based algorithms or by directly regressing the pose with end-to-end optimisations. We argue that learning point-level discriminative features is overlooked in the literature. To this end, we revisit Fully Convolutional Geometric Features (FCGF) and tailor it for object 6D pose estimation to achieve state-of-the-art performance. FCGF employs sparse convolutions and learns point-level features using a fully-convolutional network by optimising a hardest contrastive loss. We can outperform recent competitors on popular benchmarks by adopting key modifications to the loss and to the input data representations, by carefully tuning the training strategies, and by employing data augmentations suitable for the underlying problem. We carry out a thorough ablation to study the contribution of each modification. The code is available at https://github.com/jcorsetti/FCGF6D.


Learning shape correspondence with anisotropic convolutional neural networks

Neural Information Processing Systems

Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to non-Euclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks. Papers published at the Neural Information Processing Systems Conference.


Learning shape correspondence with anisotropic convolutional neural networks

Neural Information Processing Systems

Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to non-Euclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks.