Goto

Collaborating Authors

 Borovikov, Igor


On Multi-Agent Learning in Team Sports Games

arXiv.org Artificial Intelligence

In recent years, reinforcement learning has been successful in solving video games from Atari to Star Craft II. However, the end-to-end model-free reinforcement learning (RL) is not sample efficient and requires a significant amount of computational resources to achieve superhuman level performance. Model-free RL is also unlikely to produce human-like agents for playtesting and gameplaying AI in the development cycle of complex video games. In this paper, we present a hierarchical approach to training agents with the goal of achieving human-like style and high skill level in team sports games. While this is still work in progress, our preliminary results show that the presented approach holds promise for solving the posed multi-agent learning problem.


Towards Interactive Training of Non-Player Characters in Video Games

arXiv.org Artificial Intelligence

There is a high demand for high-quality Non-Player Characters (NPCs) in video games. Hand-crafting their behavior is a labor intensive and error prone engineering process with limited controls exposed to the game designers. We propose to create such NPC behaviors interactively by training an agent in the target environment using imitation learning with a human in the loop. While traditional behavior cloning may fall short of achieving the desired performance, we show that interactivity can substantially improve it with a modest amount of human efforts. The model we train is a multi-resolution ensemble of Markov models, which can be used as is or can be further "compressed" into a more compact model for inference on consumer devices. We illustrate our approach on an example in OpenAI Gym, where a human can help to quickly train an agent with only a handful of interactive demonstrations. We also outline our experiments with NPC training for a first-person shooter game currently in development.


Winning Isn't Everything: Training Human-Like Agents for Playtesting and Game AI

arXiv.org Artificial Intelligence

Recently, there have been several high-profile achievements of agents learning to play games against humans and beat them. We consider an alternative approach that instead addresses game design for a better player experience by training human-like game agents. Specifically, we study the problem of training game agents in service of the development processes of the game developers that design, build, and operate modern games. We highlight some of the ways in which we think intelligent agents can assist game developers to understand their games, and even to build them. Our early results using the proposed agent framework mark a few steps toward addressing the unique challenges that game developers face.


Exploring Gameplay With AI Agents

arXiv.org Artificial Intelligence

The process of playtesting a game is subjective, expensive and incomplete. In this paper, we present a playtesting approach that explores the game space with automated agents and collects data to answer questions posed by the designers. Rather than have agents interacting with an actual game client, this approach recreates the bare bone mechanics of the game as a separate system. Our agent is able to play in minutes what would take testers days of organic gameplay. The analysis of thousands of game simulations exposed imbalances in game actions, identified inconsequential rewards and evaluated the effectiveness of optional strategic choices. Our test case game, The Sims Mobile, was recently released and the findings shown here influenced design changes that resulted in improved player experience.


Exploring Gameplay With AI Agents

AAAI Conferences

The process of play testing a game is subjective, expensive and incomplete. In this paper, we present a play-testing approach that explores the game space with automated agents and collects data to answer questions posed by the designers. Rather than have agents interacting with an actual game client, this approach recreates the bare bone mechanics of the game as a separate system. Our agent is able to play in minutes what would take testers days of organic gameplay. The analysis of thousands of game simulations exposed imbalances in game actions, identified inconsequential rewards and evaluated the effectiveness of optional strategic choices. Our test case game, The Sims Mobile, was recently released and the findings shown here influenced design changes that resulted in improved player experience.