Boris Oreshkin
TADAM: Task dependent adaptive metric for improved few-shot learning
Boris Oreshkin, Pau Rodríguez López, Alexandre Lacoste
Few-shot learning has become essential for producing models that generalize from few examples. In this work, we identify that metric scaling and metric task conditioning are important to improve the performance of few-shot algorithms. Our analysis reveals that simple metric scaling completely changes the nature of few-shot algorithm parameter updates. Metric scaling provides improvements up to 14% in accuracy for certain metrics on the mini-Imagenet 5-way 5-shot classification task. We further propose a simple and effective way of conditioning a learner on the task sample set, resulting in learning a task-dependent metric space. Moreover, we propose and empirically test a practical end-to-end optimization procedure based on auxiliary task co-training to learn a task-dependent metric space. The resulting few-shot learning model based on the task-dependent scaled metric achieves state of the art on mini-Imagenet. We confirm these results on another few-shot dataset that we introduce in this paper based on CIFAR100.
Adaptive Cross-Modal Few-shot Learning
Chen Xing, Negar Rostamzadeh, Boris Oreshkin, Pedro O. O. Pinheiro
Metric-based meta-learning techniques have successfully been applied to fewshot classification problems. In this paper, we propose to leverage cross-modal information to enhance metric-based few-shot learning methods. Visual and semantic feature spaces have different structures by definition. For certain concepts, visual features might be richer and more discriminative than text ones. While for others, the inverse might be true. Moreover, when the support from visual information is limited in image classification, semantic representations (learned from unsupervised text corpora) can provide strong prior knowledge and context to help learning.
TADAM: Task dependent adaptive metric for improved few-shot learning
Boris Oreshkin, Pau Rodríguez López, Alexandre Lacoste
Few-shot learning has become essential for producing models that generalize from few examples. In this work, we identify that metric scaling and metric task conditioning are important to improve the performance of few-shot algorithms. Our analysis reveals that simple metric scaling completely changes the nature of few-shot algorithm parameter updates. Metric scaling provides improvements up to 14% in accuracy for certain metrics on the mini-Imagenet 5-way 5-shot classification task. We further propose a simple and effective way of conditioning a learner on the task sample set, resulting in learning a task-dependent metric space. Moreover, we propose and empirically test a practical end-to-end optimization procedure based on auxiliary task co-training to learn a task-dependent metric space. The resulting few-shot learning model based on the task-dependent scaled metric achieves state of the art on mini-Imagenet. We confirm these results on another few-shot dataset that we introduce in this paper based on CIFAR100.
Adaptive Cross-Modal Few-shot Learning
Chen Xing, Negar Rostamzadeh, Boris Oreshkin, Pedro O. O. Pinheiro
Metric-based meta-learning techniques have successfully been applied to fewshot classification problems. In this paper, we propose to leverage cross-modal information to enhance metric-based few-shot learning methods. Visual and semantic feature spaces have different structures by definition. For certain concepts, visual features might be richer and more discriminative than text ones. While for others, the inverse might be true. Moreover, when the support from visual information is limited in image classification, semantic representations (learned from unsupervised text corpora) can provide strong prior knowledge and context to help learning.