Boris Hanin
How to Start Training: The Effect of Initialization and Architecture
Boris Hanin, David Rolnick
We identify and study two common failure modes for early training in deep ReLU nets. For each, we give a rigorous proof of when it occurs and how to avoid it, for fully connected, convolutional, and residual architectures. We show that the first failure mode, exploding or vanishing mean activation length, can be avoided by initializing weights from a symmetric distribution with variance 2/fan-in and, for ResNets, by correctly scaling the residual modules. We prove that the second failure mode, exponentially large variance of activation length, never occurs in residual nets once the first failure mode is avoided. In contrast, for fully connected nets, we prove that this failure mode can happen and is avoided by keeping constant the sum of the reciprocals of layer widths. We demonstrate empirically the effectiveness of our theoretical results in predicting when networks are able to start training. In particular, we note that many popular initializations fail our criteria, whereas correct initialization and architecture allows much deeper networks to be trained.
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin, David Rolnick
The success of deep networks has been attributed in part to their expressivity: per parameter, deep networks can approximate a richer class of functions than shallow networks. In ReLU networks, the number of activation patterns is one measure of expressivity; and the maximum number of patterns grows exponentially with the depth. However, recent work has showed that the practical expressivity of deep networks - the functions they can learn rather than express - is often far from the theoretical maximum. In this paper, we show that the average number of activation patterns for ReLU networks at initialization is bounded by the total number of neurons raised to the input dimension. We show empirically that this bound, which is independent of the depth, is tight both at initialization and during training, even on memorization tasks that should maximize the number of activation patterns. Our work suggests that realizing the full expressivity of deep networks may not be possible in practice, at least with current methods.
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin, David Rolnick
The success of deep networks has been attributed in part to their expressivity: per parameter, deep networks can approximate a richer class of functions than shallow networks. In ReLU networks, the number of activation patterns is one measure of expressivity; and the maximum number of patterns grows exponentially with the depth. However, recent work has showed that the practical expressivity of deep networks - the functions they can learn rather than express - is often far from the theoretical maximum. In this paper, we show that the average number of activation patterns for ReLU networks at initialization is bounded by the total number of neurons raised to the input dimension. We show empirically that this bound, which is independent of the depth, is tight both at initialization and during training, even on memorization tasks that should maximize the number of activation patterns. Our work suggests that realizing the full expressivity of deep networks may not be possible in practice, at least with current methods.
How to Start Training: The Effect of Initialization and Architecture
Boris Hanin, David Rolnick
We identify and study two common failure modes for early training in deep ReLU nets. For each, we give a rigorous proof of when it occurs and how to avoid it, for fully connected, convolutional, and residual architectures. We show that the first failure mode, exploding or vanishing mean activation length, can be avoided by initializing weights from a symmetric distribution with variance 2/fan-in and, for ResNets, by correctly scaling the residual modules. We prove that the second failure mode, exponentially large variance of activation length, never occurs in residual nets once the first failure mode is avoided. In contrast, for fully connected nets, we prove that this failure mode can happen and is avoided by keeping constant the sum of the reciprocals of layer widths. We demonstrate empirically the effectiveness of our theoretical results in predicting when networks are able to start training. In particular, we note that many popular initializations fail our criteria, whereas correct initialization and architecture allows much deeper networks to be trained.
Which Neural Net Architectures Give Rise to Exploding and Vanishing Gradients?
Boris Hanin
We give a rigorous analysis of the statistical behavior of gradients in a randomly initialized fully connected network N with ReLU activations. Our results show that the empirical variance of the squares of the entries in the input-output Jacobian of N is exponential in a simple architecture-dependent constant, given by the sum of the reciprocals of the hidden layer widths. When is large, the gradients computed by N at initialization vary wildly. Our approach complements the mean field theory analysis of random networks. From this point of view, we rigorously compute finite width corrections to the statistics of gradients at the edge of chaos.