Goto

Collaborating Authors

 Bonet, Maria Luisa


Community Structure in Industrial SAT Instances

arXiv.org Artificial Intelligence

Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there are few works trying to exactly characterize the main features of this structure. The research community on complex networks has developed techniques of analysis and algorithms to study real-world graphs that can be used by the SAT community. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, inspired by the results on complex networks, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. In our analysis, we represent SAT instances as graphs, and we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erd\"os-R\'enyi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver. In particular, we use the community structure to detect that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. This is, learned clauses tend to contain variables of distinct communities.


MaxSAT Resolution With the Dual Rail Encoding

AAAI Conferences

Conflict-driven clause learning (CDCL) is at the core of the success of modern SAT solvers. In terms of propositional proof complexity, CDCL has been shown as strong as general resolution. Improvements to SAT solvers can be realized either by improving existing algorithms, or by exploiting proof systems stronger than CDCL. Recent work proposed an approach for solving SAT by reduction to Horn MaxSAT. The proposed reduction coupled with MaxSAT resolution represents a new proof system, DRMaxSAT, which was shown to enable polynomial time refutations of pigeonhole formulas, in contrast with either CDCL or general resolution. This paper investigates the DRMaxSAT proof system, and shows that DRMaxSAT p-simulates general resolution, that AC0-Frege+PHP p-simulates DRMaxSAT, and that DRMaxSAT can not p-simulate AC0-Frege+PHP or the cutting planes proof system.


A New Algorithm for Weighted Partial MaxSAT

AAAI Conferences

We present and implement a Weighted Partial MaxSAT solver based on successive calls to a SAT solver. We prove the correctness of our algorithm and compare our solver with other Weighted Partial MaxSAT solvers.