Bondi, Elizabeth
Role of Human-AI Interaction in Selective Prediction
Bondi, Elizabeth, Koster, Raphael, Sheahan, Hannah, Chadwick, Martin, Bachrach, Yoram, Cemgil, Taylan, Paquet, Ulrich, Dvijotham, Krishnamurthy
Recent work has shown the potential benefit of selective prediction systems that can learn to defer to a human when the predictions of the AI are unreliable, particularly to improve the reliability of AI systems in high-stakes applications like healthcare or conservation. However, most prior work assumes that human behavior remains unchanged when they solve a prediction task as part of a human-AI team as opposed to by themselves. We show that this is not the case by performing experiments to quantify human-AI interaction in the context of selective prediction. In particular, we study the impact of communicating different types of information to humans about the AI system's decision to defer. Using real-world conservation data and a selective prediction system that improves expected accuracy over that of the human or AI system working individually, we show that this messaging has a significant impact on the accuracy of human judgements. Our results study two components of the messaging strategy: 1) Whether humans are informed about the prediction of the AI system and 2) Whether they are informed about the decision of the selective prediction system to defer. By manipulating these messaging components, we show that it is possible to significantly boost human performance by informing the human of the decision to defer, but not revealing the prediction of the AI. We therefore show that it is vital to consider how the decision to defer is communicated to a human when designing selective prediction systems, and that the composite accuracy of a human-AI team must be carefully evaluated using a human-in-the-loop framework.
Can poachers find animals from public camera trap images?
Beery, Sara, Bondi, Elizabeth
To protect the location of camera trap data containing sensitive, high-target species, many ecologists randomly obfuscate the latitude and longitude of the camera when publishing their data. For example, they may publish a random location within a 1km radius of the true camera location for each camera in their network. In this paper, we investigate the robustness of geo-obfuscation for maintaining camera trap location privacy, and show via a case study that a few simple, intuitive heuristics and publicly available satellite rasters can be used to reduce the area likely to contain the camera by 87% (assuming random obfuscation within 1km), demonstrating that geo-obfuscation may be less effective than previously believed.
Dual-Mandate Patrols: Multi-Armed Bandits for Green Security
Xu, Lily, Bondi, Elizabeth, Fang, Fei, Perrault, Andrew, Wang, Kai, Tambe, Milind
Conservation efforts in green security domains to protect wildlife and forests are constrained by the limited availability of defenders (i.e., patrollers), who must patrol vast areas to protect from attackers (e.g., poachers or illegal loggers). Defenders must choose how much time to spend in each region of the protected area, balancing exploration of infrequently visited regions and exploitation of known hotspots. We formulate the problem as a stochastic multi-armed bandit, where each action represents a patrol strategy, enabling us to guarantee the rate of convergence of the patrolling policy. However, a naive bandit approach would compromise short-term performance for long-term optimality, resulting in animals poached and forests destroyed. To speed up performance, we leverage smoothness in the reward function and decomposability of actions. We show a synergy between Lipschitz-continuity and decomposition as each aids the convergence of the other. In doing so, we bridge the gap between combinatorial and Lipschitz bandits, presenting a no-regret approach that tightens existing guarantees while optimizing for short-term performance. We demonstrate that our algorithm, LIZARD, improves performance on real-world poaching data from Cambodia.
SPOT Poachers in Action: Augmenting Conservation Drones With Automatic Detection in Near Real Time
Bondi, Elizabeth (University of Southern California) | Fang, Fei (Carnegie Mellon University) | Hamilton, Mark (Microsoft) | Kar, Debarun (University of Southern California) | Dmello, Donnabell (University of Southern California) | Choi, Jongmoo (University of Southern California) | Hannaford, Robert (AirShepherd) | Iyer, Arvind (AirShepherd) | Joppa, Lucas (Microsoft) | Tambe, Milind (University of Southern California) | Nevatia, Ram (University of Southern California)
The unrelenting threat of poaching has led to increased development of new technologies to combat it. One such example is the use of long wave thermal infrared cameras mounted on unmanned aerial vehicles (UAVs or drones) to spot poachers at night and report them to park rangers before they are able to harm animals. However, monitoring the live video stream from these conservation UAVs all night is an arduous task. Therefore, we build SPOT (Systematic POacher deTector), a novel application that augments conservation drones with the ability to automatically detect poachers and animals in near real time. SPOT illustrates the feasibility of building upon state-of-the-art AI techniques, such as Faster RCNN, to address the challenges of automatically detecting animals and poachers in infrared images. This paper reports (i) the design and architecture of SPOT, (ii) a series of efforts towards more robust and faster processing to make SPOT usable in the field and provide detections in near real time, and (iii) evaluation of SPOT based on both historical videos and a real-world test run by the end users in the field. The promising results from the test in the field have led to a plan for larger-scale deployment in a national park in Botswana. While SPOT is developed for conservation drones, its design and novel techniques have wider application for automated detection from UAV videos.