Goto

Collaborating Authors

 Bolukbasi, Tolga


Scalable Influence and Fact Tracing for Large Language Model Pretraining

arXiv.org Artificial Intelligence

Training data attribution (TDA) methods aim to attribute model outputs back to specific training examples, and the application of these methods to large language model (LLM) outputs could significantly advance model transparency and data curation. However, it has been challenging to date to apply these methods to the full scale of LLM pretraining. In this paper, we refine existing gradient-based methods to work effectively at scale, allowing us to retrieve influential examples for an 8B-parameter language model from a pretraining corpus of over 160B tokens with no need for subsampling or pre-filtering. Our method combines several techniques, including optimizer state correction, a task-specific Hessian approximation, and normalized encodings, which we find to be critical for performance at scale. In quantitative evaluations on a fact tracing task, our method performs best at identifying examples that influence model predictions, but classical, model-agnostic retrieval methods such as BM25 still perform better at finding passages which explicitly contain relevant facts. These results demonstrate a misalignment between factual *attribution* and causal *influence*. With increasing model size and training tokens, we find that influence more closely aligns with factual attribution. Finally, we examine different types of examples identified as influential by our method, finding that while many directly entail a particular fact, others support the same output by reinforcing priors on relation types, common entities, and names. We release our prompt set and model outputs, along with a web-based visualization tool to explore influential examples for factual predictions, commonsense reasoning, arithmetic, and open-ended generation for an 8B-parameter LLM.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


Self-Influence Guided Data Reweighting for Language Model Pre-training

arXiv.org Artificial Intelligence

Language Models (LMs) pre-trained with self-supervision on large text corpora have become the default starting point for developing models for various NLP tasks. Once the pre-training corpus has been assembled, all data samples in the corpus are treated with equal importance during LM pre-training. However, due to varying levels of relevance and quality of data, equal importance to all the data samples may not be the optimal choice. While data reweighting has been explored in the context of task-specific supervised learning and LM fine-tuning, model-driven reweighting for pre-training data has not been explored. We fill this important gap and propose PRESENCE, a method for jointly reweighting samples by leveraging self-influence (SI) scores as an indicator of sample importance and pre-training. PRESENCE promotes novelty and stability for model pre-training. Through extensive analysis spanning multiple model sizes, datasets, and tasks, we present PRESENCE as an important first step in the research direction of sample reweighting for pre-training language models.


Towards Agile Text Classifiers for Everyone

arXiv.org Artificial Intelligence

Text-based safety classifiers are widely used for content moderation and increasingly to tune generative language model behavior - a topic of growing concern for the safety of digital assistants and chatbots. However, different policies require different classifiers, and safety policies themselves improve from iteration and adaptation. This paper introduces and evaluates methods for agile text classification, whereby classifiers are trained using small, targeted datasets that can be quickly developed for a particular policy. Experimenting with 7 datasets from three safety-related domains, comprising 15 annotation schemes, led to our key finding: prompt-tuning large language models, like PaLM 62B, with a labeled dataset of as few as 80 examples can achieve state-of-the-art performance. We argue that this enables a paradigm shift for text classification, especially for models supporting safer online discourse. Instead of collecting millions of examples to attempt to create universal safety classifiers over months or years, classifiers could be tuned using small datasets, created by individuals or small organizations, tailored for specific use cases, and iterated on and adapted in the time-span of a day.


Simfluence: Modeling the Influence of Individual Training Examples by Simulating Training Runs

arXiv.org Artificial Intelligence

Training data attribution (TDA) methods offer to trace a model's prediction on any given example back to specific influential training examples. Existing approaches do so by assigning a scalar influence score to each training example, under a simplifying assumption that influence is additive. But in reality, we observe that training examples interact in highly non-additive ways due to factors such as inter-example redundancy, training order, and curriculum learning effects. To study such interactions, we propose Simfluence, a new paradigm for TDA where the goal is not to produce a single influence score per example, but instead a training run simulator: the user asks, ``If my model had trained on example $z_1$, then $z_2$, ..., then $z_n$, how would it behave on $z_{test}$?''; the simulator should then output a simulated training run, which is a time series predicting the loss on $z_{test}$ at every step of the simulated run. This enables users to answer counterfactual questions about what their model would have learned under different training curricula, and to directly see where in training that learning would occur. We present a simulator, Simfluence-Linear, that captures non-additive interactions and is often able to predict the spiky trajectory of individual example losses with surprising fidelity. Furthermore, we show that existing TDA methods such as TracIn and influence functions can be viewed as special cases of Simfluence-Linear. This enables us to directly compare methods in terms of their simulation accuracy, subsuming several prior TDA approaches to evaluation. In experiments on large language model (LLM) fine-tuning, we show that our method predicts loss trajectories with much higher accuracy than existing TDA methods (doubling Spearman's correlation and reducing mean-squared error by 75%) across several tasks, models, and training methods.


Gradient-Based Automated Iterative Recovery for Parameter-Efficient Tuning

arXiv.org Artificial Intelligence

Pretrained large language models (LLMs) are able to solve a wide variety of tasks through transfer learning. Various explainability methods have been developed to investigate their decision making process. TracIn (Pruthi et al., 2020) is one such gradient-based method which explains model inferences based on the influence of training examples. In this paper, we explore the use of TracIn to improve model performance in the parameter-efficient tuning (PET) setting. We develop conversational safety classifiers via the prompt-tuning PET method and show how the unique characteristics of the PET regime enable TracIn to identify the cause for certain misclassifications by LLMs. We develop a new methodology for using gradient-based explainability techniques to improve model performance, G-BAIR: gradient-based automated iterative recovery. We show that G-BAIR can recover LLM performance on benchmarks after manually corrupting training labels. This suggests that influence methods like TracIn can be used to automatically perform data cleaning, and introduces the potential for interactive debugging and relabeling for PET-based transfer learning methods.


Debiasing Embeddings for Reduced Gender Bias in Text Classification

arXiv.org Machine Learning

We investigate how this bias affects downstream classification tasks, using the case study of occupation classification (De-Arteaga et al., 2019). We show that traditional techniques for debiasing embeddings can actually worsen the bias of the downstream classifier by providing a less noisy channel for communicating gender information. With a relatively minor adjustment, however, we show how these same techniques can be used to simultaneously reduce bias and maintain high classification accuracy.


The What-If Tool: Interactive Probing of Machine Learning Models

arXiv.org Machine Learning

A key challenge in developing and deploying Machine Learning (ML) systems is understanding their performance across a wide range of inputs. To address this challenge, we created the What-If Tool, an open-source application that allows practitioners to probe, visualize, and analyze ML systems, with minimal coding. The What-If Tool lets practitioners test performance in hypothetical situations, analyze the importance of different data features, and visualize model behavior across multiple models and subsets of input data. It also lets practitioners measure systems according to multiple ML fairness metrics. We describe the design of the tool, and report on real-life usage at different organizations.


Segment Integrated Gradients: Better attributions through regions

arXiv.org Machine Learning

These evaluation methods provide ways to validate the saliency Saliency methods can aid understanding of deep neural method's outputs (e.g., to ensure they can be relied upon networks. Recent years have witnessed many improvements to explain model behavior) [2, 1], or to empirically measure to saliency methods, as well as new ways for evaluating the methods' outputs, enabling comparison of two or them. In this paper, we 1) present a novel region-based more techniques. For example, "sanity checks" have been attribution method, Segment-Integrated Gradients (SIG), developed that help determine whether a saliency method's that builds upon integrated gradients [23], 2) introduce results meaningfully correspond to a model's learned parameters evaluation methods for empirically assessing the quality [1], while Sensitivity-n [2] empirically measures of image-based saliency maps (Performance Information the quality of a saliency method's output by comparing the Curves (PICs)), and 3) contribute an axiom-based sanity change in the output prediction to the sum of attributions.