Bolkart, Timo
Learning to Stabilize Faces
Bednarik, Jan, Wood, Erroll, Choutas, Vasileios, Bolkart, Timo, Wang, Daoye, Wu, Chenglei, Beeler, Thabo
Nowadays, it is possible to scan faces and automatically register them with high quality. However, the resulting face meshes often need further processing: we need to stabilize them to remove unwanted head movement. Stabilization is important for tasks like game development or movie making which require facial expressions to be cleanly separated from rigid head motion. Since manual stabilization is labor-intensive, there have been attempts to automate it. However, previous methods remain impractical: they either still require some manual input, produce imprecise alignments, rely on dubious heuristics and slow optimization, or assume a temporally ordered input. Instead, we present a new learning-based approach that is simple and fully automatic. We treat stabilization as a regression problem: given two face meshes, our network directly predicts the rigid transform between them that brings their skulls into alignment. We generate synthetic training data using a 3D Morphable Model (3DMM), exploiting the fact that 3DMM parameters separate skull motion from facial skin motion. Through extensive experiments we show that our approach outperforms the state-of-the-art both quantitatively and qualitatively on the tasks of stabilizing discrete sets of facial expressions as well as dynamic facial performances. Furthermore, we provide an ablation study detailing the design choices and best practices to help others adopt our approach for their own uses. Supplementary videos can be found on the project webpage syntec-research.github.io/FaceStab.
Learning Disentangled Avatars with Hybrid 3D Representations
Feng, Yao, Liu, Weiyang, Bolkart, Timo, Yang, Jinlong, Pollefeys, Marc, Black, Michael J.
Tremendous efforts have been made to learn animatable and photorealistic human avatars. Towards this end, both explicit and implicit 3D representations are heavily studied for a holistic modeling and capture of the whole human (e.g., body, clothing, face and hair), but neither representation is an optimal choice in terms of representation efficacy since different parts of the human avatar have different modeling desiderata. For example, meshes are generally not suitable for modeling clothing and hair. Motivated by this, we present Disentangled Avatars~(DELTA), which models humans with hybrid explicit-implicit 3D representations. DELTA takes a monocular RGB video as input, and produces a human avatar with separate body and clothing/hair layers. Specifically, we demonstrate two important applications for DELTA. For the first one, we consider the disentanglement of the human body and clothing and in the second, we disentangle the face and hair. To do so, DELTA represents the body or face with an explicit mesh-based parametric 3D model and the clothing or hair with an implicit neural radiance field. To make this possible, we design an end-to-end differentiable renderer that integrates meshes into volumetric rendering, enabling DELTA to learn directly from monocular videos without any 3D supervision. Finally, we show that how these two applications can be easily combined to model full-body avatars, such that the hair, face, body and clothing can be fully disentangled yet jointly rendered. Such a disentanglement enables hair and clothing transfer to arbitrary body shapes. We empirically validate the effectiveness of DELTA's disentanglement by demonstrating its promising performance on disentangled reconstruction, virtual clothing try-on and hairstyle transfer. To facilitate future research, we also release an open-sourced pipeline for the study of hybrid human avatar modeling.
SCULPT: Shape-Conditioned Unpaired Learning of Pose-dependent Clothed and Textured Human Meshes
Sanyal, Soubhik, Ghosh, Partha, Yang, Jinlong, Black, Michael J., Thies, Justus, Bolkart, Timo
We present SCULPT, a novel 3D generative model for clothed and textured 3D meshes of humans. Specifically, we devise a deep neural network that learns to represent the geometry and appearance distribution of clothed human bodies. Training such a model is challenging, as datasets of textured 3D meshes for humans are limited in size and accessibility. Our key observation is that there exist medium-sized 3D scan datasets like CAPE, as well as large-scale 2D image datasets of clothed humans and multiple appearances can be mapped to a single geometry. To effectively learn from the two data modalities, we propose an unpaired learning procedure for pose-dependent clothed and textured human meshes. Specifically, we learn a pose-dependent geometry space from 3D scan data. We represent this as per vertex displacements w.r.t. the SMPL model. Next, we train a geometry conditioned texture generator in an unsupervised way using the 2D image data. We use intermediate activations of the learned geometry model to condition our texture generator. To alleviate entanglement between pose and clothing type, and pose and clothing appearance, we condition both the texture and geometry generators with attribute labels such as clothing types for the geometry, and clothing colors for the texture generator. We automatically generated these conditioning labels for the 2D images based on the visual question answering model BLIP and CLIP. We validate our method on the SCULPT dataset, and compare to state-of-the-art 3D generative models for clothed human bodies. We will release the codebase for research purposes.
GIF: Generative Interpretable Faces
Ghosh, Partha, Gupta, Pravir Singh, Uziel, Roy, Ranjan, Anurag, Black, Michael, Bolkart, Timo
Photo-realistic visualization and animation of expressive human faces have been a long standing challenge. On one end of the spectrum, 3D face modeling methods provide parametric control but tend to generate unrealistic images, while on the other end, generative 2D models like GANs (Generative Adversarial Networks) output photo-realistic face images, but lack explicit control. Recent methods gain partial control, either by attempting to disentangle different factors in an unsupervised manner, or by adding control post hoc to a pre-trained model. Trained GANs without pre-defined control, however, may entangle factors that are hard to undo later. To guarantee some disentanglement that provides us with desired kinds of control, we train our generative model conditioned on pre-defined control parameters. Specifically, we condition StyleGAN2 on FLAME, a generative 3D face model. However, we found out that a naive conditioning on FLAME parameters yields rather unsatisfactory results. Instead we render out geometry and photo-metric details of the FLAME mesh and use these for conditioning instead. This gives us a generative 2D face model named GIF (Generative Interpretable Faces) that shares FLAME's parametric control. Given FLAME parameters for shape, pose, and expressions, parameters for appearance and lighting, and an additional style vector, GIF outputs photo-realistic face images. To evaluate how well GIF follows its conditioning and the impact of different design choices, we perform a perceptual study. The code and trained model are publicly available for research purposes at https://github.com/ParthaEth/GIF.