Goto

Collaborating Authors

 Boleda, Gemma


LLMs as a synthesis between symbolic and continuous approaches to language

arXiv.org Artificial Intelligence

Since the middle of the 20th century, a fierce battle is being fought between symbolic and continuous approaches to language and cognition. The success of deep learning models, and LLMs in particular, has been alternatively taken as showing that the continuous camp has won, or dismissed as an irrelevant engineering development. However, in this position paper I argue that deep learning models for language actually represent a synthesis between the two traditions. This is because 1) deep learning architectures allow for both continuous/distributed and symbolic/discrete-like representations and computations; 2) models trained on language make use this flexibility. In particular, I review recent research in mechanistic interpretability that showcases how a substantial part of morphosyntactic knowledge is encoded in a near-discrete fashion in LLMs. This line of research suggests that different behaviors arise in an emergent fashion, and models flexibly alternate between the two modes (and everything in between) as needed. This is possibly one of the main reasons for their wild success; and it is also what makes them particularly interesting for the study of language and cognition. Is it time for peace?


Why do objects have many names? A study on word informativeness in language use and lexical systems

arXiv.org Artificial Intelligence

Human lexicons contain many different words that speakers can use to refer to the same object, e.g., "purple" or "magenta" for the same shade of color. On the one hand, studies on language use have explored how speakers adapt their referring expressions to successfully communicate in context, without focusing on properties of the lexical system. On the other hand, studies in language evolution have discussed how competing pressures for informativeness and simplicity shape lexical systems, without tackling in-context communication. We aim at bridging the gap between these traditions, and explore why a soft mapping between referents and words is a good solution for communication, by taking into account both in-context communication and the structure of the lexicon. We propose a simple measure of informativeness for words and lexical systems, grounded in a visual space, and analyze color naming data for English and Mandarin Chinese. We conclude that optimal lexical systems are those where multiple words can apply to the same referent, conveying different amounts of information. Such systems allow speakers to maximize communication accuracy and minimize the amount of information they convey when communicating about referents in contexts.


The Impact of Familiarity on Naming Variation: A Study on Object Naming in Mandarin Chinese

arXiv.org Artificial Intelligence

Different speakers often produce different names for the same object or entity (e.g., "woman" vs. "tourist" for a female tourist). The reasons behind variation in naming are not well understood. We create a Language and Vision dataset for Mandarin Chinese that provides an average of 20 names for 1319 naturalistic images, and investigate how familiarity with a given kind of object relates to the degree of naming variation it triggers across subjects. We propose that familiarity influences naming variation in two competing ways: increasing familiarity can either expand vocabulary, leading to higher variation, or promote convergence on conventional names, thereby reducing variation. We find evidence for both factors being at play. Our study illustrates how computational resources can be used to address research questions in Cognitive Science.


Run Like a Girl! Sports-Related Gender Bias in Language and Vision

arXiv.org Artificial Intelligence

Gender bias in Language and Vision datasets and models has the potential to perpetuate harmful stereotypes and discrimination. We analyze gender bias in two Language and Vision datasets. Consistent with prior work, we find that both datasets underrepresent women, which promotes their invisibilization. Moreover, we hypothesize and find that a bias affects human naming choices for people playing sports: speakers produce names indicating the sport (e.g. 'tennis player' or 'surfer') more often when it is a man or a boy participating in the sport than when it is a woman or a girl, with an average of 46% vs. 35% of sports-related names for each gender. A computational model trained on these naming data reproduces the bias. We argue that both the data and the model result in representational harm against women.


Communication breakdown: On the low mutual intelligibility between human and neural captioning

arXiv.org Artificial Intelligence

We compare the 0-shot performance of a neural caption-based image retriever when given as input either human-produced captions or captions generated by a neural captioner. We conduct this comparison on the recently introduced ImageCoDe data-set (Krojer et al., 2022) which contains hard distractors nearly identical to the images to be retrieved. We find that the neural retriever has much higher performance when fed neural rather than human captions, despite the fact that the former, unlike the latter, were generated without awareness of the distractors that make the task hard. Even more remarkably, when the same neural captions are given to human subjects, their retrieval performance is almost at chance level. Our results thus add to the growing body of evidence that, even when the ``language'' of neural models resembles English, this superficial resemblance might be deeply misleading.


Don't Blame Distributional Semantics if it can't do Entailment

arXiv.org Artificial Intelligence

Distributional semantics has emerged as a promising model of certain'conceptual' aspects of linguistic meaning (e.g., Landauer and Dumais 1997; Turney and Pantel 2010; Baroni and Lenci 2010; Lenci 2018) and as an indispensable component of applications in Natural Language Processing (e.g., reference resolution, machine translation, image captioning; especially since Mikolov et al. 2013). Yet its theoretical status within a general theory of meaning and of language and cognition more generally is not clear (e.g., Lenci 2008; Erk 2010; Boleda and Herbelot 2016; Lenci 2018). In particular, it is not clear whether distributional semantics can be understood as an actual model of expression meaning - what Lenci (2008) calls the'strong' view of distributional semantics - or merely as a model of something that correlates with expression meaning in certain partial ways - the'weak' view. In this paper we aim to resolve, in favor of the'strong' view, the question of what exactly distributional semantics models, what its role should be in an overall theory of language and cognition, and how its contribution to state of the art applications can be understood. We do so in part by clarifying its frequently discussed but still obscure relation to formal semantics. Our proposal relies crucially on the distinction between what linguistic expressions mean outside of any particular context, and what speakers mean by them in a particular context of utterance.


"Show me the cup": Reference with Continuous Representations

arXiv.org Artificial Intelligence

One of the most basic functions of language is to refer to objects in a shared scene. Modeling reference with continuous representations is challenging because it requires individuation, i.e., tracking and distinguishing an arbitrary number of referents. We introduce a neural network model that, given a definite description and a set of objects represented by natural images, points to the intended object if the expression has a unique referent, or indicates a failure, if it does not. The model, directly trained on reference acts, is competitive with a pipeline manually engineered to perform the same task, both when referents are purely visual, and when they are characterized by a combination of visual and linguistic properties.