Boissin, Thibaut
An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures
Boissin, Thibaut, Mamalet, Franck, Fel, Thomas, Picard, Agustin Martin, Massena, Thomas, Serrurier, Mathieu
Orthogonal convolutional layers are the workhorse of multiple areas in machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitzconstrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions.In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method for constructing orthogonal convolutions, effectively overcoming these limitations. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source library implementing this method, available at https://github.com/thib-s/orthogonium.
Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization
Fel, Thomas, Boissin, Thibaut, Boutin, Victor, Picard, Agustin, Novello, Paul, Colin, Julien, Linsley, Drew, Rousseau, Tom, Cadène, Rémi, Gardes, Laurent, Serre, Thomas
Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corresponding challenges in scaling it to deeper neural networks. Here, we describe MACO, a simple approach to address these shortcomings. The main idea is to generate images by optimizing the phase spectrum while keeping the magnitude constant to ensure that generated explanations lie in the space of natural images. Our approach yields significantly better results (both qualitatively and quantitatively) and unlocks efficient and interpretable feature visualizations for large state-of-the-art neural networks. We also show that our approach exhibits an attribution mechanism allowing us to augment feature visualizations with spatial importance. We validate our method on a novel benchmark for comparing feature visualization methods, and release its visualizations for all classes of the ImageNet dataset on https://serre-lab.github.io/Lens/. Overall, our approach unlocks, for the first time, feature visualizations for large, state-of-the-art deep neural networks without resorting to any parametric prior image model.
On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective
Serrurier, Mathieu, Mamalet, Franck, Fel, Thomas, Béthune, Louis, Boissin, Thibaut
Input gradients have a pivotal role in a variety of applications, including adversarial attack algorithms for evaluating model robustness, explainable AI techniques for generating Saliency Maps, and counterfactual explanations. However, Saliency Maps generated by traditional neural networks are often noisy and provide limited insights. In this paper, we demonstrate that, on the contrary, the Saliency Maps of 1-Lipschitz neural networks, learnt with the dual loss of an optimal transportation problem, exhibit desirable XAI properties: They are highly concentrated on the essential parts of the image with low noise, significantly outperforming state-of-the-art explanation approaches across various models and metrics. We also prove that these maps align unprecedentedly well with human explanations on ImageNet. To explain the particularly beneficial properties of the Saliency Map for such models, we prove this gradient encodes both the direction of the transportation plan and the direction towards the nearest adversarial attack. Following the gradient down to the decision boundary is no longer considered an adversarial attack, but rather a counterfactual explanation that explicitly transports the input from one class to another. Thus, Learning with such a loss jointly optimizes the classification objective and the alignment of the gradient , i.e. the Saliency Map, to the transportation plan direction. These networks were previously known to be certifiably robust by design, and we demonstrate that they scale well for large problems and models, and are tailored for explainability using a fast and straightforward method.
Adversarial alignment: Breaking the trade-off between the strength of an attack and its relevance to human perception
Linsley, Drew, Feng, Pinyuan, Boissin, Thibaut, Ashok, Alekh Karkada, Fel, Thomas, Olaiya, Stephanie, Serre, Thomas
Deep neural networks (DNNs) are known to have a fundamental sensitivity to adversarial attacks, perturbations of the input that are imperceptible to humans yet powerful enough to change the visual decision of a model. Adversarial attacks have long been considered the "Achilles' heel" of deep learning, which may eventually force a shift in modeling paradigms. Nevertheless, the formidable capabilities of modern large-scale DNNs have somewhat eclipsed these early concerns. Do adversarial attacks continue to pose a threat to DNNs? Here, we investigate how the robustness of DNNs to adversarial attacks has evolved as their accuracy on ImageNet has continued to improve. We measure adversarial robustness in two different ways: First, we measure the smallest adversarial attack needed to cause a model to change its object categorization decision. Second, we measure how aligned successful attacks are with the features that humans find diagnostic for object recognition. We find that adversarial attacks are inducing bigger and more easily detectable changes to image pixels as DNNs grow better on ImageNet, but these attacks are also becoming less aligned with features that humans find diagnostic for recognition. To better understand the source of this trade-off, we turn to the neural harmonizer, a DNN training routine that encourages models to leverage the same features as humans to solve tasks. Harmonized DNNs achieve the best of both worlds and experience attacks that are detectable and affect features that humans find diagnostic for recognition, meaning that attacks on these models are more likely to be rendered ineffective by inducing similar effects on human perception. Our findings suggest that the sensitivity of DNNs to adversarial attacks can be mitigated by DNN scale, data scale, and training routines that align models with biological intelligence.
DP-SGD Without Clipping: The Lipschitz Neural Network Way
Bethune, Louis, Massena, Thomas, Boissin, Thibaut, Prudent, Yannick, Friedrich, Corentin, Mamalet, Franck, Bellet, Aurelien, Serrurier, Mathieu, Vigouroux, David
State-of-the-art approaches for training Differentially Private (DP) Deep Neural Networks (DNN) faces difficulties to estimate tight bounds on the sensitivity of the network's layers, and instead rely on a process of per-sample gradient clipping. This clipping process not only biases the direction of gradients but also proves costly both in memory consumption and in computation. To provide sensitivity bounds and bypass the drawbacks of the clipping process, our theoretical analysis of Lipschitz constrained networks reveals an unexplored link between the Lipschitz constant with respect to their input and the one with respect to their parameters. By bounding the Lipschitz constant of each layer with respect to its parameters we guarantee DP training of these networks. This analysis not only allows the computation of the aforementioned sensitivities at scale but also provides leads on to how maximize the gradient-to-noise ratio for fixed privacy guarantees. To facilitate the application of Lipschitz networks and foster robust and certifiable learning under privacy guarantees, we provide a Python package that implements building blocks allowing the construction and private training of such networks.
CRAFT: Concept Recursive Activation FacTorization for Explainability
Fel, Thomas, Picard, Agustin, Bethune, Louis, Boissin, Thibaut, Vigouroux, David, Colin, Julien, Cadène, Rémi, Serre, Thomas
Attribution methods, which employ heatmaps to identify the most influential regions of an image that impact model decisions, have gained widespread popularity as a type of explainability method. However, recent research has exposed the limited practical value of these methods, attributed in part to their narrow focus on the most prominent regions of an image -- revealing "where" the model looks, but failing to elucidate "what" the model sees in those areas. In this work, we try to fill in this gap with CRAFT -- a novel approach to identify both "what" and "where" by generating concept-based explanations. We introduce 3 new ingredients to the automatic concept extraction literature: (i) a recursive strategy to detect and decompose concepts across layers, (ii) a novel method for a more faithful estimation of concept importance using Sobol indices, and (iii) the use of implicit differentiation to unlock Concept Attribution Maps. We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach. We show that the proposed concept importance estimation technique is more faithful to the model than previous methods. When evaluating the usefulness of the method for human experimenters on a human-centered utility benchmark, we find that our approach significantly improves on two of the three test scenarios. Our code is freely available at github.com/deel-ai/Craft.
Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural Networks
Bethune, Louis, Novello, Paul, Boissin, Thibaut, Coiffier, Guillaume, Serrurier, Mathieu, Vincenot, Quentin, Troya-Galvis, Andres
We propose a new method, dubbed One Class Signed Distance Function (OCSDF), to perform One Class Classification (OCC) by provably learning the Signed Distance Function (SDF) to the boundary of the support of any distribution. The distance to the support can be interpreted as a normality score, and its approximation using 1-Lipschitz neural networks provides robustness bounds against l2 adversarial attacks, an under-explored weakness of deep learning-based OCC algorithms. As a result, OCSDF comes with a new metric, certified AUROC, that can be computed at the same cost as any classical AUROC. We show that OCSDF is competitive against concurrent methods on tabular and image data while being way more robust to adversarial attacks, illustrating its theoretical properties. Finally, as exploratory research perspectives, we theoretically and empirically show how OCSDF connects OCC with image generation and implicit neural surface parametrization. Our code is available at https://github.com/Algue-Rythme/OneClassMetricLearning
Achieving robustness in classification using optimal transport with hinge regularization
Serrurier, Mathieu, Mamalet, Franck, González-Sanz, Alberto, Boissin, Thibaut, Loubes, Jean-Michel, del Barrio, Eustasio
We propose a new framework for robust binary classification, with Deep Neural Networks, based on a hinge regularization of the Kantorovich-Rubinstein dual formulation for the estimation of the Wasserstein distance. The robustness of the approach is guaranteed by the strict Lipschitz constraint on functions required by the optimization problem and direct interpretation of the loss in terms of adversarial robustness. We prove that this classification formulation has a solution, and is still the dual formulation of an optimal transportation problem. We also establish the geometrical properties of this optimal solution. We summarize state-of-the-art methods to enforce Lipschitz constraints on neural networks and we propose new ones for convolutional networks (associated with an open source library for this purpose). The experiments show that the approach provides the expected guarantees in terms of robustness without any significant accuracy drop. The results also suggest that adversarial attacks on the proposed models visibly and meaningfully change the input, and can thus serve as an explanation for the classification.