Bohte, Sander
Efficient Uncertainty Estimation in Spiking Neural Networks via MC-dropout
Sun, Tao, Yin, Bojian, Bohte, Sander
Spiking neural networks (SNNs) have gained attention as models of sparse and event-driven communication of biological neurons, and as such have shown increasing promise for energy-efficient applications in neuromorphic hardware. As with classical artificial neural networks (ANNs), predictive uncertainties are important for decision making in high-stakes applications, such as autonomous vehicles, medical diagnosis, and high frequency trading. Yet, discussion of uncertainty estimation in SNNs is limited, and approaches for uncertainty estimation in artificial neural networks (ANNs) are not directly applicable to SNNs. Here, we propose an efficient Monte Carlo(MC)-dropout based approach for uncertainty estimation in SNNs. Our approach exploits the time-step mechanism of SNNs to enable MC-dropout in a computationally efficient manner, without introducing significant overheads during training and inference while demonstrating high accuracy and uncertainty quality.
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
Yik, Jason, Ahmed, Soikat Hasan, Ahmed, Zergham, Anderson, Brian, Andreou, Andreas G., Bartolozzi, Chiara, Basu, Arindam, Blanken, Douwe den, Bogdan, Petrut, Bohte, Sander, Bouhadjar, Younes, Buckley, Sonia, Cauwenberghs, Gert, Corradi, Federico, de Croon, Guido, Danielescu, Andreea, Daram, Anurag, Davies, Mike, Demirag, Yigit, Eshraghian, Jason, Forest, Jeremy, Furber, Steve, Furlong, Michael, Gilra, Aditya, Indiveri, Giacomo, Joshi, Siddharth, Karia, Vedant, Khacef, Lyes, Knight, James C., Kriener, Laura, Kubendran, Rajkumar, Kudithipudi, Dhireesha, Lenz, Gregor, Manohar, Rajit, Mayr, Christian, Michmizos, Konstantinos, Muir, Dylan, Neftci, Emre, Nowotny, Thomas, Ottati, Fabrizio, Ozcelikkale, Ayca, Pacik-Nelson, Noah, Panda, Priyadarshini, Pao-Sheng, Sun, Payvand, Melika, Pehle, Christian, Petrovici, Mihai A., Posch, Christoph, Renner, Alpha, Sandamirskaya, Yulia, Schaefer, Clemens JS, van Schaik, André, Schemmel, Johannes, Schuman, Catherine, Seo, Jae-sun, Sheik, Sadique, Shrestha, Sumit Bam, Sifalakis, Manolis, Sironi, Amos, Stewart, Kenneth, Stewart, Terrence C., Stratmann, Philipp, Tang, Guangzhi, Timcheck, Jonathan, Verhelst, Marian, Vineyard, Craig M., Vogginger, Bernhard, Yousefzadeh, Amirreza, Zhou, Biyan, Zohora, Fatima Tuz, Frenkel, Charlotte, Reddi, Vijay Janapa
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.
An image representation based convolutional network for DNA classification
Yin, Bojian, Balvert, Marleen, Zambrano, Davide, Schönhuth, Alexander, Bohte, Sander
The folding structure of the DNA molecule combined with helper molecules, also referred to as the chromatin, is highly relevant for the functional properties of DNA. The chromatin structure is largely determined by the underlying primary DNA sequence, though the interaction is not yet fully understood. In this paper we develop a convolutional neural network that takes an image-representation of primary DNA sequence as its input, and predicts key determinants of chromatin structure. The method is developed such that it is capable of detecting interactions between distal elements in the DNA sequence, which are known to be highly relevant. Our experiments show that the method outperforms several existing methods both in terms of prediction accuracy and training time.
Conditional Time Series Forecasting with Convolutional Neural Networks
Borovykh, Anastasia, Bohte, Sander, Oosterlee, Cornelis W.
We present a method for conditional time series forecasting based on the recent deep convolutional WaveNet architecture. The proposed network contains stacks of dilated convolutions that allow it to access a broad range of history when forecasting; multiple convolutional filters are applied in parallel to separate time series and allow for the fast processing of data and the exploitation of the correlation structure between the multivariate time series. The performance of the deep convolutional neural network is analyzed on various multivariate time series and compared to that of the well-known autoregressive model and a long-short term memory network. We show that our network is able to effectively learn dependencies between the series without the need for long historical time series and can outperform the baseline neural forecasting models.