Goto

Collaborating Authors

 Bogo, Federica


EgoBody: Human Body Shape, Motion and Social Interactions from Head-Mounted Devices

arXiv.org Artificial Intelligence

Understanding social interactions from first-person views is crucial for many applications, ranging from assistive robotics to AR/VR. A first step for reasoning about interactions is to understand human pose and shape. However, research in this area is currently hindered by the lack of data. Existing datasets are limited in terms of either size, annotations, ground-truth capture modalities or the diversity of interactions. We address this shortcoming by proposing EgoBody, a novel large-scale dataset for social interactions in complex 3D scenes. We employ Microsoft HoloLens2 headsets to record rich egocentric data streams (including RGB, depth, eye gaze, head and hand tracking). To obtain accurate 3D ground-truth, we calibrate the headset with a multi-Kinect rig and fit expressive SMPL-X body meshes to multi-view RGB-D frames, reconstructing 3D human poses and shapes relative to the scene. We collect 68 sequences, spanning diverse sociological interaction categories, and propose the first benchmark for 3D full-body pose and shape estimation from egocentric views. Our dataset and code will be available for research at https://sanweiliti.github.io/egobody/egobody.html.


Learning Motion Priors for 4D Human Body Capture in 3D Scenes

arXiv.org Artificial Intelligence

Recovering high-quality 3D human motion in complex scenes from monocular videos is important for many applications, ranging from AR/VR to robotics. However, capturing realistic human-scene interactions, while dealing with occlusions and partial views, is challenging; current approaches are still far from achieving compelling results. We address this problem by proposing LEMO: LEarning human MOtion priors for 4D human body capture. By leveraging the large-scale motion capture dataset AMASS, we introduce a novel motion smoothness prior, which strongly reduces the jitters exhibited by poses recovered over a sequence. Furthermore, to handle contacts and occlusions occurring frequently in body-scene interactions, we design a contact friction term and a contact-aware motion infiller obtained via per-instance self-supervised training. To prove the effectiveness of the proposed motion priors, we combine them into a novel pipeline for 4D human body capture in 3D scenes. With our pipeline, we demonstrate high-quality 4D human body capture, reconstructing smooth motions and physically plausible body-scene interactions. The code and data are available at https://sanweiliti.github.io/LEMO/LEMO.html.