Bo Han
Masking: A New Perspective of Noisy Supervision
Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, Masashi Sugiyama
It is important to learn various types of classifiers given training data with noisy labels. Noisy labels, in the most popular noise model hitherto, are corrupted from ground-truth labels by an unknown noise transition matrix. Thus, by estimating this matrix, classifiers can escape from overfitting those noisy labels. However, such estimation is practically difficult, due to either the indirect nature of two-step approaches, or not big enough data to afford end-to-end approaches. In this paper, we propose a human-assisted approach called "Masking" that conveys human cognition of invalid class transitions and naturally speculates the structure of the noise transition matrix. To this end, we derive a structure-aware probabilistic model incorporating a structure prior, and solve the challenges from structure extraction and structure alignment. Thanks to Masking, we only estimate unmasked noise transition probabilities and the burden of estimation is tremendously reduced. We conduct extensive experiments on CIFAR-10 and CIFAR-100 with three noise structures as well as the industrial-level Clothing1M with agnostic noise structure, and the results show that Masking can improve the robustness of classifiers significantly.
Co-teaching: Robust training of deep neural networks with extremely noisy labels
Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, Masashi Sugiyama
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called "Co-teaching" for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models.
Masking: A New Perspective of Noisy Supervision
Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, Masashi Sugiyama
It is important to learn various types of classifiers given training data with noisy labels. Noisy labels, in the most popular noise model hitherto, are corrupted from ground-truth labels by an unknown noise transition matrix. Thus, by estimating this matrix, classifiers can escape from overfitting those noisy labels. However, such estimation is practically difficult, due to either the indirect nature of two-step approaches, or not big enough data to afford end-to-end approaches. In this paper, we propose a human-assisted approach called "Masking" that conveys human cognition of invalid class transitions and naturally speculates the structure of the noise transition matrix. To this end, we derive a structure-aware probabilistic model incorporating a structure prior, and solve the challenges from structure extraction and structure alignment. Thanks to Masking, we only estimate unmasked noise transition probabilities and the burden of estimation is tremendously reduced. We conduct extensive experiments on CIFAR-10 and CIFAR-100 with three noise structures as well as the industrial-level Clothing1M with agnostic noise structure, and the results show that Masking can improve the robustness of classifiers significantly.
Co-teaching: Robust training of deep neural networks with extremely noisy labels
Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, Masashi Sugiyama
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called "Co-teaching" for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models.