Blum, Hermann
A 3D Mixed Reality Interface for Human-Robot Teaming
Chen, Jiaqi, Sun, Boyang, Pollefeys, Marc, Blum, Hermann
This paper presents a mixed-reality human-robot teaming system. It allows human operators to see in real-time where robots are located, even if they are not in line of sight. The operator can also visualize the map that the robots create of their environment and can easily send robots to new goal positions. The system mainly consists of a mapping and a control module. The mapping module is a real-time multi-agent visual SLAM system that co-localizes all robots and mixed-reality devices to a common reference frame. Visualizations in the mixed-reality device then allow operators to see a virtual life-sized representation of the cumulative 3D map overlaid onto the real environment. As such, the operator can effectively "see through" walls into other rooms. To control robots and send them to new locations, we propose a drag-and-drop interface. An operator can grab any robot hologram in a 3D mini map and drag it to a new desired goal pose. We validate the proposed system through a user study and real-world deployments. We make the mixed-reality application publicly available at https://github.com/cvg/HoloLens_ros.
Unsupervised Continual Semantic Adaptation through Neural Rendering
Liu, Zhizheng, Milano, Francesco, Frey, Jonas, Siegwart, Roland, Blum, Hermann, Cadena, Cesar
An increasing amount of applications rely on data-driven models that are deployed for perception tasks across a sequence of scenes. Due to the mismatch between training and deployment data, adapting the model on the new scenes is often crucial to obtain good performance. In this work, we study continual multi-scene adaptation for the task of semantic segmentation, assuming that no ground-truth labels are available during deployment and that performance on the previous scenes should be maintained. We propose training a Semantic-NeRF network for each scene by fusing the predictions of a segmentation model and then using the view-consistent rendered semantic labels as pseudo-labels to adapt the model. Through joint training with the segmentation model, the Semantic-NeRF model effectively enables 2D-3D knowledge transfer. Furthermore, due to its compact size, it can be stored in a long-term memory and subsequently used to render data from arbitrary viewpoints to reduce forgetting. We evaluate our approach on ScanNet, where we outperform both a voxel-based baseline and a state-of-the-art unsupervised domain adaptation method.
Continual Adaptation of Semantic Segmentation using Complementary 2D-3D Data Representations
Frey, Jonas, Blum, Hermann, Milano, Francesco, Siegwart, Roland, Cadena, Cesar
Semantic segmentation networks are usually pre-trained once and not updated during deployment. As a consequence, misclassifications commonly occur if the distribution of the training data deviates from the one encountered during the robot's operation. We propose to mitigate this problem by adapting the neural network to the robot's environment during deployment, without any need for external supervision. Leveraging complementary data representations, we generate a supervision signal, by probabilistically accumulating consecutive 2D semantic predictions in a volumetric 3D map. We then train the network on renderings of the accumulated semantic map, effectively resolving ambiguities and enforcing multi-view consistency through the 3D representation. In contrast to scene adaptation methods, we aim to retain the previously-learned knowledge, and therefore employ a continual learning experience replay strategy to adapt the network. Through extensive experimental evaluation, we show successful adaptation to real-world indoor scenes both on the ScanNet dataset and on in-house data recorded with an RGB-D sensor. Our method increases the segmentation accuracy on average by 9.9% compared to the fixed pre-trained neural network, while retaining knowledge from the pre-training dataset.
Quantifying Aleatoric and Epistemic Uncertainty Using Density Estimation in Latent Space
Postels, Janis, Blum, Hermann, Cadena, Cesar, Siegwart, Roland, Van Gool, Luc, Tombari, Federico
The distribution of a neural network's latent representations has been successfully used to detect Out-of-Distribution (OOD) data. Since OOD detection denotes a popular benchmark for epistemic uncertainty estimates, this raises the question of a deeper correlation. This work investigates whether the distribution of latent representations indeed contains information about the uncertainty associated with the predictions of a neural network. Prior work identifies epistemic uncertainty with the surprise, thus the negative log-likelihood, of observing a particular latent representation, which we verify empirically. Moreover, we demonstrate that the output-conditional distribution of hidden representations allows quantifying aleatoric uncertainty via the entropy of the predictive distribution. We analyze epistemic and aleatoric uncertainty inferred from the representations of different layers and conclude with the exciting finding that the hidden repesentations of a deterministic neural network indeed contain information about its uncertainty. We verify our findings on both classification and regression models.