Goto

Collaborating Authors

 Bloembergen, Daan


Robust temporal difference learning for critical domains

arXiv.org Machine Learning

We present a new Q-function operator for temporal difference (TD) learning methods that explicitly encodes robustness against significant rare events (SRE) in critical domains. The operator, which we call the $\kappa$-operator, allows to learn a safe policy in a model-based fashion without actually observing the SRE. We introduce single- and multi-agent robust TD methods using the operator $\kappa$. We prove convergence of the operator to the optimal safe Q-function with respect to the model using the theory of Generalized Markov Decision Processes. In addition we prove convergence to the optimal Q-function of the original MDP given that the probability of SREs vanishes. Empirical evaluations demonstrate the superior performance of $\kappa$-based TD methods both in the early learning phase as well as in the final converged stage. In addition we show robustness of the proposed method to small model errors, as well as its applicability in a multi-agent context.


Lenient Multi-Agent Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated because agents update their policies in parallel [11]. In this work we apply leniency [23] to MA-DRL. Lenient agents map state-action pairs to decaying temperature values that control the amount of leniency applied towards negative policy updates that are sampled from the ERM. This introduces optimism in the value-function update, and has been shown to facilitate cooperation in tabular fully-cooperative multi-agent reinforcement learning problems. We evaluate our Lenient-DQN (LDQN) empirically against the related Hysteretic-DQN (HDQN) algorithm [22] as well as a modified version we call scheduled-HDQN, that uses average reward learning near terminal states. Evaluations take place in extended variations of the Coordinated Multi-Agent Object Transportation Problem (CMOTP) [8] which include fully-cooperative sub-tasks and stochastic rewards. We find that LDQN agents are more likely to converge to the optimal policy in a stochastic reward CMOTP compared to standard and scheduled-HDQN agents.


Theory of Cooperation in Complex Social Networks

AAAI Conferences

This paper presents a theoretical as well as empirical study on the evolution of cooperation on complex social networks, following the continuous action iterated prisoner's dilemma (CAIPD) model. In particular, convergence to network-wide agreement is proven for both evolutionary networks with fixed interaction dynamics, as well as for coevolutionary networks where these dynamics change over time. Moreover, an extension to the CAIPD model is proposed that allows to model influence on the evolution of cooperation in social networks. As such, this work contributes to a better understanding of behavioral change on social networks, and provides a first step towards their active control.


Telepresence Robots as a Research Platform for AI

AAAI Conferences

Recently, various commercial telepresence robots have become available to the broader public. Here, we present the telepresence domain as a research platform for (re-)integrating AI. With MITRO: Maastricht Intelligent Telepresence RObot, we built a low-cost working prototype of a robot system specifically designed for augmented and autonomous telepresence. Telepresence robots can be deployed in a wide range of application domains, and augmented presence with assisted control can greatly improve the experience for the user. The research domains that we are focusing on are human robot interaction, navigation and perception.