Goto

Collaborating Authors

 Blake Mason


Learning Nearest Neighbor Graphs from Noisy Distance Samples

Neural Information Processing Systems

We consider the problem of learning the nearest neighbor graph of a dataset of n items. The metric is unknown, but we can query an oracle to obtain a noisy estimate of the distance between any pair of items. This framework applies to problem domains where one wants to learn people's preferences from responses commonly modeled as noisy distance judgments. In this paper, we propose an active algorithm to find the graph with high probability and analyze its query complexity. In contrast to existing work that forces Euclidean structure, our method is valid for general metrics, assuming only symmetry and the triangle inequality.


Learning Low-Dimensional Metrics

Neural Information Processing Systems

This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax) bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric; 4) we also bound the accuracy of the learned metric relative to the underlying true generative metric. All the results involve novel mathematical approaches to the metric learning problem, and also shed new light on the special case of ordinal embedding (aka non-metric multidimensional scaling).


Learning Nearest Neighbor Graphs from Noisy Distance Samples

Neural Information Processing Systems

We consider the problem of learning the nearest neighbor graph of a dataset of n items. The metric is unknown, but we can query an oracle to obtain a noisy estimate of the distance between any pair of items. This framework applies to problem domains where one wants to learn people's preferences from responses commonly modeled as noisy distance judgments. In this paper, we propose an active algorithm to find the graph with high probability and analyze its query complexity. In contrast to existing work that forces Euclidean structure, our method is valid for general metrics, assuming only symmetry and the triangle inequality.