Birhane, Abeba
Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency
Birhane, Abeba, McGann, Marek
In this paper we argue that key, often sensational and misleading, claims regarding linguistic capabilities of Large Language Models (LLMs) are based on at least two unfounded assumptions; the assumption of language completeness and the assumption of data completeness. Language completeness assumes that a distinct and complete thing such as `a natural language' exists, the essential characteristics of which can be effectively and comprehensively modelled by an LLM. The assumption of data completeness relies on the belief that a language can be quantified and wholly captured by data. Work within the enactive approach to cognitive science makes clear that, rather than a distinct and complete thing, language is a means or way of acting. Languaging is not the kind of thing that can admit of a complete or comprehensive modelling. From an enactive perspective we identify three key characteristics of enacted language; embodiment, participation, and precariousness, that are absent in LLMs, and likely incompatible in principle with current architectures. We argue that these absences imply that LLMs are not now and cannot in their present form be linguistic agents the way humans are. We illustrate the point in particular through the phenomenon of `algospeak', a recently described pattern of high stakes human language activity in heavily controlled online environments. On the basis of these points, we conclude that sensational and misleading claims about LLM agency and capabilities emerge from a deep misconception of both what human language is and what LLMs are.
The Lost Art of Mathematical Modelling
Gyllingberg, Linnรฉa, Birhane, Abeba, Sumpter, David J. T.
We provide a critique of mathematical biology in light of rapid developments in modern machine learning. We argue that out of the three modelling activities -- (1) formulating models; (2) analysing models; and (3) fitting or comparing models to data -- inherent to mathematical biology, researchers currently focus too much on activity (2) at the cost of (1). This trend, we propose, can be reversed by realising that any given biological phenomena can be modelled in an infinite number of different ways, through the adoption of an open/pluralistic approach. We explain the open approach using fish locomotion as a case study and illustrate some of the pitfalls -- universalism, creating models of models, etc. -- that hinder mathematical biology. We then ask how we might rediscover a lost art: that of creative mathematical modelling. This article is dedicated to the memory of Edmund Crampin.
Handling and Presenting Harmful Text in NLP Research
Kirk, Hannah Rose, Birhane, Abeba, Vidgen, Bertie, Derczynski, Leon
Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is \textit{sought} as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus \textit{unsought} if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce \textsc{HarmCheck} -- a documentation standard for handling and presenting harmful text in research.
Ethical and social risks of harm from Language Models
Weidinger, Laura, Mellor, John, Rauh, Maribeth, Griffin, Conor, Uesato, Jonathan, Huang, Po-Sen, Cheng, Myra, Glaese, Mia, Balle, Borja, Kasirzadeh, Atoosa, Kenton, Zac, Brown, Sasha, Hawkins, Will, Stepleton, Tom, Biles, Courtney, Birhane, Abeba, Haas, Julia, Rimell, Laura, Hendricks, Lisa Anne, Isaac, William, Legassick, Sean, Irving, Geoffrey, Gabriel, Iason
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
The Values Encoded in Machine Learning Research
Birhane, Abeba, Kalluri, Pratyusha, Card, Dallas, Agnew, William, Dotan, Ravit, Bao, Michelle
Machine learning (ML) currently exerts an outsized influence on the world, increasingly affecting communities and institutional practices. It is therefore critical that we question vague conceptions of the field as value-neutral or universally beneficial, and investigate what specific values the field is advancing. In this paper, we present a rigorous examination of the values of the field by quantitatively and qualitatively analyzing 100 highly cited ML papers published at premier ML conferences, ICML and NeurIPS. We annotate key features of papers which reveal their values: how they justify their choice of project, which aspects they uplift, their consideration of potential negative consequences, and their institutional affiliations and funding sources. We find that societal needs are typically very loosely connected to the choice of project, if mentioned at all, and that consideration of negative consequences is extremely rare. We identify 67 values that are uplifted in machine learning research, and, of these, we find that papers most frequently justify and assess themselves based on performance, generalization, efficiency, researcher understanding, novelty, and building on previous work. We present extensive textual evidence and analysis of how these values are operationalized. Notably, we find that each of these top values is currently being defined and applied with assumptions and implications generally supporting the centralization of power. Finally, we find increasingly close ties between these highly cited papers and tech companies and elite universities.
Large image datasets: A pyrrhic win for computer vision?
Prabhu, Vinay Uday, Birhane, Abeba
In this paper we investigate problematic practices and consequences of large scale vision datasets. We examine broad issues such as the question of consent and justice as well as specific concerns such as the inclusion of verifiably pornographic images in datasets. Taking the ImageNet-ILSVRC-2012 dataset as an example, we perform a cross-sectional model-based quantitative census covering factors such as age, gender, NSFW content scoring, class-wise accuracy, human-cardinality-analysis, and the semanticity of the image class information in order to statistically investigate the extent and subtleties of ethical transgressions. We then use the census to help hand-curate a look-up-table of images in the ImageNet-ILSVRC-2012 dataset that fall into the categories of verifiably pornographic: shot in a non-consensual setting (up-skirt), beach voyeuristic, and exposed private parts. We survey the landscape of harm and threats both society broadly and individuals face due to uncritical and ill-considered dataset curation practices. We then propose possible courses of correction and critique the pros and cons of these. We have duly open-sourced all of the code and the census meta-datasets generated in this endeavor for the computer vision community to build on. By unveiling the severity of the threats, our hope is to motivate the constitution of mandatory Institutional Review Boards (IRB) for large scale dataset curation processes.