Bilello, Michel
Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge
LaBella, Dominic, Baid, Ujjwal, Khanna, Omaditya, McBurney-Lin, Shan, McLean, Ryan, Nedelec, Pierre, Rashid, Arif, Tahon, Nourel Hoda, Altes, Talissa, Bhalerao, Radhika, Dhemesh, Yaseen, Godfrey, Devon, Hilal, Fathi, Floyd, Scott, Janas, Anastasia, Kazerooni, Anahita Fathi, Kirkpatrick, John, Kent, Collin, Kofler, Florian, Leu, Kevin, Maleki, Nazanin, Menze, Bjoern, Pajot, Maxence, Reitman, Zachary J., Rudie, Jeffrey D., Saluja, Rachit, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Adewole, Maruf, Albrecht, Jake, Anazodo, Udunna, Anwar, Syed Muhammad, Bergquist, Timothy, Chen, Sully Francis, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Khalili, Nastaran, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Van Leemput, Koen, Li, Hongwei Bran, Linguraru, Marius George, Liu, Xinyang, Mahtabfar, Aria, Meier, Zeke, Moawad, Ahmed W., Mongan, John, Piraud, Marie, Shinohara, Russell Takeshi, Wiggins, Walter F., Abayazeed, Aly H., Akinola, Rachel, Jakab, András, Bilello, Michel, de Verdier, Maria Correia, Crivellaro, Priscila, Davatzikos, Christos, Farahani, Keyvan, Freymann, John, Hess, Christopher, Huang, Raymond, Lohmann, Philipp, Moassefi, Mana, Pease, Matthew W., Vollmuth, Phillipp, Sollmann, Nico, Diffley, David, Nandolia, Khanak K., Warren, Daniel I., Hussain, Ali, Fehringer, Pascal, Bronstein, Yulia, Deptula, Lisa, Stein, Evan G., Taherzadeh, Mahsa, de Oliveira, Eduardo Portela, Haughey, Aoife, Kontzialis, Marinos, Saba, Luca, Turner, Benjamin, Brüßeler, Melanie M. T., Ansari, Shehbaz, Gkampenis, Athanasios, Weiss, David Maximilian, Mansour, Aya, Shawali, Islam H., Yordanov, Nikolay, Stein, Joel M., Hourani, Roula, Moshebah, Mohammed Yahya, Abouelatta, Ahmed Magdy, Rizvi, Tanvir, Willms, Klara, Martin, Dann C., Okar, Abdullah, D'Anna, Gennaro, Taha, Ahmed, Sharifi, Yasaman, Faghani, Shahriar, Kite, Dominic, Pinho, Marco, Haider, Muhammad Ammar, Aristizabal, Alejandro, Karargyris, Alexandros, Kassem, Hasan, Pati, Sarthak, Sheller, Micah, Alonso-Basanta, Michelle, Villanueva-Meyer, Javier, Rauschecker, Andreas M., Nada, Ayman, Aboian, Mariam, Flanders, Adam E., Wiestler, Benedikt, Bakas, Spyridon, Calabrese, Evan
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283 hidden test set cases. Each case included T2, T2/FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Participant automated segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899, 0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting
Kofler, Florian, Meissen, Felix, Steinbauer, Felix, Graf, Robert, Oswald, Eva, de da Rosa, Ezequiel, Li, Hongwei Bran, Baid, Ujjwal, Hoelzl, Florian, Turgut, Oezguen, Horvath, Izabela, Waldmannstetter, Diana, Bukas, Christina, Adewole, Maruf, Anwar, Syed Muhammad, Janas, Anastasia, Kazerooni, Anahita Fathi, LaBella, Dominic, Moawad, Ahmed W, Farahani, Keyvan, Eddy, James, Bergquist, Timothy, Chung, Verena, Shinohara, Russell Takeshi, Dako, Farouk, Wiggins, Walter, Reitman, Zachary, Wang, Chunhao, Liu, Xinyang, Jiang, Zhifan, Familiar, Ariana, Conte, Gian-Marco, Johanson, Elaine, Meier, Zeke, Davatzikos, Christos, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan M, Wiest, Roland, Kirschke, Jan, Colen, Rivka R, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-André, Mahajan, Abhishek, Mohan, Suyash, Mongan, John, Hess, Christopher, Cha, Soonmee, Villanueva-Meyer, Javier, Colak, Errol, Crivellaro, Priscila, Jakab, Andras, Albrecht, Jake, Anazodo, Udunna, Aboian, Mariam, Iglesias, Juan Eugenio, Van Leemput, Koen, Bakas, Spyridon, Rueckert, Daniel, Wiestler, Benedikt, Ezhov, Ivan, Piraud, Marie, Menze, Bjoern
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantees for images featuring lesions. Examples include but are not limited to algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS 2023 inpainting challenge. Here, the participants' task is to explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later it will be updated to summarize the findings of the challenge. The challenge is organized as part of the BraTS 2023 challenge hosted at the MICCAI 2023 conference in Vancouver, Canada.
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Pati, Sarthak, Baid, Ujjwal, Edwards, Brandon, Sheller, Micah, Wang, Shih-Han, Reina, G Anthony, Foley, Patrick, Gruzdev, Alexey, Karkada, Deepthi, Davatzikos, Christos, Sako, Chiharu, Ghodasara, Satyam, Bilello, Michel, Mohan, Suyash, Vollmuth, Philipp, Brugnara, Gianluca, Preetha, Chandrakanth J, Sahm, Felix, Maier-Hein, Klaus, Zenk, Maximilian, Bendszus, Martin, Wick, Wolfgang, Calabrese, Evan, Rudie, Jeffrey, Villanueva-Meyer, Javier, Cha, Soonmee, Ingalhalikar, Madhura, Jadhav, Manali, Pandey, Umang, Saini, Jitender, Garrett, John, Larson, Matthew, Jeraj, Robert, Currie, Stuart, Frood, Russell, Fatania, Kavi, Huang, Raymond Y, Chang, Ken, Balana, Carmen, Capellades, Jaume, Puig, Josep, Trenkler, Johannes, Pichler, Josef, Necker, Georg, Haunschmidt, Andreas, Meckel, Stephan, Shukla, Gaurav, Liem, Spencer, Alexander, Gregory S, Lombardo, Joseph, Palmer, Joshua D, Flanders, Adam E, Dicker, Adam P, Sair, Haris I, Jones, Craig K, Venkataraman, Archana, Jiang, Meirui, So, Tiffany Y, Chen, Cheng, Heng, Pheng Ann, Dou, Qi, Kozubek, Michal, Lux, Filip, Michálek, Jan, Matula, Petr, Keřkovský, Miloš, Kopřivová, Tereza, Dostál, Marek, Vybíhal, Václav, Vogelbaum, Michael A, Mitchell, J Ross, Farinhas, Joaquim, Maldjian, Joseph A, Yogananda, Chandan Ganesh Bangalore, Pinho, Marco C, Reddy, Divya, Holcomb, James, Wagner, Benjamin C, Ellingson, Benjamin M, Cloughesy, Timothy F, Raymond, Catalina, Oughourlian, Talia, Hagiwara, Akifumi, Wang, Chencai, To, Minh-Son, Bhardwaj, Sargam, Chong, Chee, Agzarian, Marc, Falcão, Alexandre Xavier, Martins, Samuel B, Teixeira, Bernardo C A, Sprenger, Flávia, Menotti, David, Lucio, Diego R, LaMontagne, Pamela, Marcus, Daniel, Wiestler, Benedikt, Kofler, Florian, Ezhov, Ivan, Metz, Marie, Jain, Rajan, Lee, Matthew, Lui, Yvonne W, McKinley, Richard, Slotboom, Johannes, Radojewski, Piotr, Meier, Raphael, Wiest, Roland, Murcia, Derrick, Fu, Eric, Haas, Rourke, Thompson, John, Ormond, David Ryan, Badve, Chaitra, Sloan, Andrew E, Vadmal, Vachan, Waite, Kristin, Colen, Rivka R, Pei, Linmin, Ak, Murat, Srinivasan, Ashok, Bapuraj, J Rajiv, Rao, Arvind, Wang, Nicholas, Yoshiaki, Ota, Moritani, Toshio, Turk, Sevcan, Lee, Joonsang, Prabhudesai, Snehal, Morón, Fanny, Mandel, Jacob, Kamnitsas, Konstantinos, Glocker, Ben, Dixon, Luke V M, Williams, Matthew, Zampakis, Peter, Panagiotopoulos, Vasileios, Tsiganos, Panagiotis, Alexiou, Sotiris, Haliassos, Ilias, Zacharaki, Evangelia I, Moustakas, Konstantinos, Kalogeropoulou, Christina, Kardamakis, Dimitrios M, Choi, Yoon Seong, Lee, Seung-Koo, Chang, Jong Hee, Ahn, Sung Soo, Luo, Bing, Poisson, Laila, Wen, Ning, Tiwari, Pallavi, Verma, Ruchika, Bareja, Rohan, Yadav, Ipsa, Chen, Jonathan, Kumar, Neeraj, Smits, Marion, van der Voort, Sebastian R, Alafandi, Ahmed, Incekara, Fatih, Wijnenga, Maarten MJ, Kapsas, Georgios, Gahrmann, Renske, Schouten, Joost W, Dubbink, Hendrikus J, Vincent, Arnaud JPE, Bent, Martin J van den, French, Pim J, Klein, Stefan, Yuan, Yading, Sharma, Sonam, Tseng, Tzu-Chi, Adabi, Saba, Niclou, Simone P, Keunen, Olivier, Hau, Ann-Christin, Vallières, Martin, Fortin, David, Lepage, Martin, Landman, Bennett, Ramadass, Karthik, Xu, Kaiwen, Chotai, Silky, Chambless, Lola B, Mistry, Akshitkumar, Thompson, Reid C, Gusev, Yuriy, Bhuvaneshwar, Krithika, Sayah, Anousheh, Bencheqroun, Camelia, Belouali, Anas, Madhavan, Subha, Booth, Thomas C, Chelliah, Alysha, Modat, Marc, Shuaib, Haris, Dragos, Carmen, Abayazeed, Aly, Kolodziej, Kenneth, Hill, Michael, Abbassy, Ahmed, Gamal, Shady, Mekhaimar, Mahmoud, Qayati, Mohamed, Reyes, Mauricio, Park, Ji Eun, Yun, Jihye, Kim, Ho Sung, Mahajan, Abhishek, Muzi, Mark, Benson, Sean, Beets-Tan, Regina G H, Teuwen, Jonas, Herrera-Trujillo, Alejandro, Trujillo, Maria, Escobar, William, Abello, Ana, Bernal, Jose, Gómez, Jhon, Choi, Joseph, Baek, Stephen, Kim, Yusung, Ismael, Heba, Allen, Bryan, Buatti, John M, Kotrotsou, Aikaterini, Li, Hongwei, Weiss, Tobias, Weller, Michael, Bink, Andrea, Pouymayou, Bertrand, Shaykh, Hassan F, Saltz, Joel, Prasanna, Prateek, Shrestha, Sampurna, Mani, Kartik M, Payne, David, Kurc, Tahsin, Pelaez, Enrique, Franco-Maldonado, Heydy, Loayza, Francis, Quevedo, Sebastian, Guevara, Pamela, Torche, Esteban, Mendoza, Cristobal, Vera, Franco, Ríos, Elvis, López, Eduardo, Velastin, Sergio A, Ogbole, Godwin, Oyekunle, Dotun, Odafe-Oyibotha, Olubunmi, Osobu, Babatunde, Shu'aibu, Mustapha, Dorcas, Adeleye, Soneye, Mayowa, Dako, Farouk, Simpson, Amber L, Hamghalam, Mohammad, Peoples, Jacob J, Hu, Ricky, Tran, Anh, Cutler, Danielle, Moraes, Fabio Y, Boss, Michael A, Gimpel, James, Veettil, Deepak Kattil, Schmidt, Kendall, Bialecki, Brian, Marella, Sailaja, Price, Cynthia, Cimino, Lisa, Apgar, Charles, Shah, Prashant, Menze, Bjoern, Barnholtz-Sloan, Jill S, Martin, Jason, Bakas, Spyridon
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Bakas, Spyridon, Reyes, Mauricio, Jakab, Andras, Bauer, Stefan, Rempfler, Markus, Crimi, Alessandro, Shinohara, Russell Takeshi, Berger, Christoph, Ha, Sung Min, Rozycki, Martin, Prastawa, Marcel, Alberts, Esther, Lipkova, Jana, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan, Wiest, Roland, Kirschke, Jan, Wiestler, Benedikt, Colen, Rivka, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-Andre, Mahajan, Abhishek, Baid, Ujjwal, Kwon, Dongjin, Agarwal, Manu, Alam, Mahbubul, Albiol, Alberto, Albiol, Antonio, Alex, Varghese, Tran, Tuan Anh, Arbel, Tal, Avery, Aaron, B., Pranjal, Banerjee, Subhashis, Batchelder, Thomas, Batmanghelich, Kayhan, Battistella, Enzo, Bendszus, Martin, Benson, Eze, Bernal, Jose, Biros, George, Cabezas, Mariano, Chandra, Siddhartha, Chang, Yi-Ju, Chazalon, Joseph, Chen, Shengcong, Chen, Wei, Chen, Jefferson, Cheng, Kun, Christoph, Meinel, Chylla, Roger, Clérigues, Albert, Costa, Anthony, Cui, Xiaomeng, Dai, Zhenzhen, Dai, Lutao, Deutsch, Eric, Ding, Changxing, Dong, Chao, Dudzik, Wojciech, Estienne, Théo, Shin, Hyung Eun, Everson, Richard, Fabrizio, Jonathan, Fang, Longwei, Feng, Xue, Fidon, Lucas, Fridman, Naomi, Fu, Huan, Fuentes, David, Gering, David G, Gao, Yaozong, Gates, Evan, Gholami, Amir, Gong, Mingming, González-Villá, Sandra, Pauloski, J. Gregory, Guan, Yuanfang, Guo, Sheng, Gupta, Sudeep, Thakur, Meenakshi H, Maier-Hein, Klaus H., Han, Woo-Sup, He, Huiguang, Hernández-Sabaté, Aura, Herrmann, Evelyn, Himthani, Naveen, Hsu, Winston, Hsu, Cheyu, Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, Rui, Huang, Teng-Yi, Huang, Weilin, Huo, Quan, HV, Vivek, Isensee, Fabian, Islam, Mobarakol, Albiol, Francisco J., Wang, Chiatse J., Jambawalikar, Sachin, Jose, V Jeya Maria, Jian, Weijian, Jin, Peter, Jungo, Alain, Nuechterlein, Nicholas K, Kao, Po-Yu, Kermi, Adel, Keutzer, Kurt, Khened, Mahendra, Kickingereder, Philipp, King, Nik, Knapp, Haley, Knecht, Urspeter, Kohli, Lisa, Kong, Deren, Kong, Xiangmao, Koppers, Simon, Kori, Avinash, Krishnamurthi, Ganapathy, Kumar, Piyush, Kushibar, Kaisar, Lachinov, Dmitrii, Lee, Joon, Lee, Chengen, Lee, Yuehchou, Lefkovits, Szidonia, Lefkovits, Laszlo, Li, Tengfei, Li, Hongwei, Li, Wenqi, Li, Hongyang, Li, Xiaochuan, Lin, Zheng-Shen, Lin, Fengming, Liu, Chang, Liu, Boqiang, Liu, Xiang, Liu, Mingyuan, Liu, Ju, Lladó, Xavier, Luo, Lin, Iftekharuddin, Khan M., Tsai, Yuhsiang M., Ma, Jun, Ma, Kai, Mackie, Thomas, Mahmoudi, Issam, Marcinkiewicz, Michal, McKinley, Richard, Mehta, Sachin, Mehta, Raghav, Meier, Raphael, Merhof, Dorit, Meyer, Craig, Mitra, Sushmita, Moiyadi, Aliasgar, Mrukwa, Grzegorz, Monteiro, Miguel A. B., Myronenko, Andriy, Carver, Eric N, Nalepa, Jakub, Ngo, Thuyen, Niu, Chen, Oermann, Eric, Oliveira, Arlindo, Oliver, Arnau, Ourselin, Sebastien, French, Andrew P., Pound, Michael P., Pridmore, Tony P., Serrano-Rubio, Juan Pablo, Paragios, Nikos, Paschke, Brad, Pei, Linmim, Peng, Suting, Pham, Bao, Piella, Gemma, Pillai, G. N., Piraud, Marie, Popli, Anmol, Prčkovska, Vesna, Puch, Santi, Puybareau, Élodie, Qiao, Xu, Suter, Yannick R, Scott, Matthew R., Rane, Swapnil, Rebsamen, Michael, Ren, Hongliang, Ren, Xuhua, Rezaei, Mina, Lorenzo, Pablo Ribalta, Rippel, Oliver, Robert, Charlotte, Choudhury, Ahana Roy, Jackson, Aaron S., Manjunath, B. S., Salem, Mostafa, Salvi, Joaquim, Sánchez, Irina, Schellingerhout, Dawid, Shboul, Zeina, Shen, Haipeng, Shen, Dinggang, Shenoy, Varun, Shi, Feng, Shu, Hai, Snyder, James, Han, Il Song, Soni, Mehul, Stawiaski, Jean, Subramanian, Shashank, Sun, Li, Sun, Roger, Sun, Jiawei, Sun, Kay, Sun, Yu, Sun, Guoxia, Sun, Shuang, Park, Moo Sung, Szilagyi, Laszlo, Talbar, Sanjay, Tao, Dacheng, Tao, Dacheng, Khadir, Mohamed Tarek, Thakur, Siddhesh, Tochon, Guillaume, Tran, Tuan, Tseng, Kuan-Lun, Turlapov, Vadim, Tustison, Nicholas, Shankar, B. Uma, Vakalopoulou, Maria, Valverde, Sergi, Vanguri, Rami, Vasiliev, Evgeny, Vercauteren, Tom, Vidyaratne, Lasitha, Vivekanandan, Ajeet, Wang, Guotai, Wang, Qian, Wang, Weichung, Wen, Ning, Wen, Xin, Weninger, Leon, Wick, Wolfgang, Wu, Shaocheng, Wu, Qiang, Xia, Yong, Xu, Yanwu, Xu, Xiaowen, Xu, Peiyuan, Yang, Tsai-Ling, Yang, Xiaoping, Yang, Hao-Yu, Yang, Junlin, Yang, Haojin, Yao, Hongdou, Young-Moxon, Brett, Yue, Xiangyu, Zhang, Songtao, Zhang, Angela, Zhang, Kun, Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhao, Sicheng, Zhao, Yu, Zheng, Yefeng, Zhong, Liming, Zhou, Chenhong, Zhou, Xiaobing, Zhu, Hongtu, Zong, Weiwei, Kalpathy-Cramer, Jayashree, Farahani, Keyvan, Davatzikos, Christos, van Leemput, Koen, Menze, Bjoern
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.