Goto

Collaborating Authors

 Bieshaar, Maarten


A Safety-Adapted Loss for Pedestrian Detection in Automated Driving

arXiv.org Artificial Intelligence

In safety-critical domains like automated driving (AD), errors by the object detector may endanger pedestrians and other vulnerable road users (VRU). As common evaluation metrics are not an adequate safety indicator, recent works employ approaches to identify safety-critical VRU and back-annotate the risk to the object detector. However, those approaches do not consider the safety factor in the deep neural network (DNN) training process. Thus, state-of-the-art DNN penalizes all misdetections equally irrespective of their criticality. Subsequently, to mitigate the occurrence of critical failure cases, i.e., false negatives, a safety-aware training strategy might be required to enhance the detection performance for critical pedestrians. In this paper, we propose a novel safety-aware loss variation that leverages the estimated per-pedestrian criticality scores during training. We exploit the reachability set-based time-to-collision (TTC-RSB) metric from the motion domain along with distance information to account for the worst-case threat quantifying the criticality. Our evaluation results using RetinaNet and FCOS on the nuScenes dataset demonstrate that training the models with our safety-aware loss function mitigates the misdetection of critical pedestrians without sacrificing performance for the general case, i.e., pedestrians outside the safety-critical zone.


Out-of-distribution Detection and Generation using Soft Brownian Offset Sampling and Autoencoders

arXiv.org Artificial Intelligence

Deep neural networks often suffer from overconfidence which can be partly remedied by improved out-of-distribution detection. For this purpose, we propose a novel approach that allows for the generation of out-of-distribution datasets based on a given in-distribution dataset. This new dataset can then be used to improve out-of-distribution detection for the given dataset and machine learning task at hand. The samples in this dataset are with respect to the feature space close to the in-distribution dataset and therefore realistic and plausible. Hence, this dataset can also be used to safeguard neural networks, i.e., to validate the generalization performance. Our approach first generates suitable representations of an in-distribution dataset using an autoencoder and then transforms them using our novel proposed Soft Brownian Offset method. After transformation, the decoder part of the autoencoder allows for the generation of these implicit out-of-distribution samples. This newly generated dataset then allows for mixing with other datasets and thus improved training of an out-of-distribution classifier, increasing its performance. Experimentally, we show that our approach is promising for time series using synthetic data. Using our new method, we also show in a quantitative case study that we can improve the out-of-distribution detection for the MNIST dataset. Finally, we provide another case study on the synthetic generation of out-of-distribution trajectories, which can be used to validate trajectory prediction algorithms for automated driving.


Quantile Surfaces -- Generalizing Quantile Regression to Multivariate Targets

arXiv.org Artificial Intelligence

In this article, we present a novel approach to multivariate probabilistic forecasting. Our approach is based on an extension of single-output quantile regression (QR) to multivariate-targets, called quantile surfaces (QS). QS uses a simple yet compelling idea of indexing observations of a probabilistic forecast through direction and vector length to estimate a central tendency. We extend the single-output QR technique to multivariate probabilistic targets. QS efficiently models dependencies in multivariate target variables and represents probability distributions through discrete quantile levels. Therefore, we present a novel two-stage process. In the first stage, we perform a deterministic point forecast (i.e., central tendency estimation). Subsequently, we model the prediction uncertainty using QS involving neural networks called quantile surface regression neural networks (QSNN). Additionally, we introduce new methods for efficient and straightforward evaluation of the reliability and sharpness of the issued probabilistic QS predictions. We complement this by the directional extension of the Continuous Ranked Probability Score (CRPS) score. Finally, we evaluate our novel approach on synthetic data and two currently researched real-world challenges in two different domains: First, probabilistic forecasting for renewable energy power generation, second, short-term cyclists trajectory forecasting for autonomously driving vehicles. Especially for the latter, our empirical results show that even a simple one-layer QSNN outperforms traditional parametric multivariate forecasting techniques, thus improving the state-of-the-art performance.


Cooperative Starting Movement Detection of Cyclists Using Convolutional Neural Networks and a Boosted Stacking Ensemble

arXiv.org Artificial Intelligence

In future, vehicles and other traffic participants will be interconnected and equipped with various types of sensors, allowing for cooperation on different levels, such as situation prediction or intention detection. In this article we present a cooperative approach for starting movement detection of cyclists using a boosted stacking ensemble approach realizing feature- and decision level cooperation. We introduce a novel method based on a 3D Convolutional Neural Network (CNN) to detect starting motions on image sequences by learning spatio-temporal features. The CNN is complemented by a smart device based starting movement detection originating from smart devices carried by the cyclist. Both model outputs are combined in a stacking ensemble approach using an extreme gradient boosting classifier resulting in a fast and yet robust cooperative starting movement detector. We evaluate our cooperative approach on real-world data originating from experiments with 49 test subjects consisting of 84 starting motions.


Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence

arXiv.org Artificial Intelligence

Vulnerable road users (VRUs, i.e. cyclists and pedestrians) will play an important role in future traffic. To avoid accidents and achieve a highly efficient traffic flow, it is important to detect VRUs and to predict their intentions. In this article a holistic approach for detecting intentions of VRUs by cooperative methods is presented. The intention detection consists of basic movement primitive prediction, e.g. standing, moving, turning, and a forecast of the future trajectory. Vehicles equipped with sensors, data processing systems and communication abilities, referred to as intelligent vehicles, acquire and maintain a local model of their surrounding traffic environment, e.g. crossing cyclists. Heterogeneous, open sets of agents (cooperating and interacting vehicles, infrastructure, e.g. cameras and laser scanners, and VRUs equipped with smart devices and body-worn sensors) exchange information forming a multi-modal sensor system with the goal to reliably and robustly detect VRUs and their intentions under consideration of real time requirements and uncertainties. The resulting model allows to extend the perceptual horizon of the individual agent beyond their own sensory capabilities, enabling a longer forecast horizon. Concealments, implausibilities and inconsistencies are resolved by the collective intelligence of cooperating agents. Novel techniques of signal processing and modelling in combination with analytical and learning based approaches of pattern and activity recognition are used for detection, as well as intention prediction of VRUs. Cooperation, by means of probabilistic sensor and knowledge fusion, takes place on the level of perception and intention recognition. Based on the requirements of the cooperative approach for the communication a new strategy for an ad hoc network is proposed.


Starting Movement Detection of Cyclists Using Smart Devices

arXiv.org Artificial Intelligence

In near future, vulnerable road users (VRUs) such as cyclists and pedestrians will be equipped with smart devices and wearables which are capable to communicate with intelligent vehicles and other traffic participants. Road users are then able to cooperate on different levels, such as in cooperative intention detection for advanced VRU protection. Smart devices can be used to detect intentions, e.g., an occluded cyclist intending to cross the road, to warn vehicles of VRUs, and prevent potential collisions. This article presents a human activity recognition approach to detect the starting movement of cyclists wearing smart devices. We propose a novel two-stage feature selection procedure using a score specialized for robust starting detection reducing the false positive detections and leading to understandable and interpretable features. The detection is modelled as a classification problem and realized by means of a machine learning classifier. We introduce an auxiliary class, that models starting movements and allows to integrate early movement indicators, i.e., body part movements indicating future behaviour. In this way we improve the robustness and reduce the detection time of the classifier. Our empirical studies with real-world data originating from experiments which involve 49 test subjects and consists of 84 starting motions show that we are able to detect the starting movements early. Our approach reaches an F1-score of 67 % within 0.33 s after the first movement of the bicycle wheel. Investigations concerning the device wearing location show that for devices worn in the trouser pocket the detector has less false detections and detects starting movements faster on average. We found that we can further improve the results when we train distinct classifiers for different wearing locations.


Cooperative Tracking of Cyclists Based on Smart Devices and Infrastructure

arXiv.org Artificial Intelligence

In future traffic scenarios, vehicles and other traffic participants will be interconnected and equipped with various types of sensors, allowing for cooperation based on data or information exchange. This article presents an approach to cooperative tracking of cyclists using smart devices and infrastructure-based sensors. A smart device is carried by the cyclists and an intersection is equipped with a wide angle stereo camera system. Two tracking models are presented and compared. The first model is based on the stereo camera system detections only, whereas the second model cooperatively combines the camera based detections with velocity and yaw rate data provided by the smart device. Our aim is to overcome limitations of tracking approaches based on single data sources. We show in numerical evaluations on scenes where cyclists are starting or turning right that the cooperation leads to an improvement in both the ability to keep track of a cyclist and the accuracy of the track particularly when it comes to occlusions in the visual system. We, therefore, contribute to the safety of vulnerable road users in future traffic.


Coopetitive Soft Gating Ensemble

arXiv.org Machine Learning

In this article, we proposed the Coopetititve Soft Gating Ensemble or CSGE for general machine learning tasks. The goal of machine learning is to create models which poses a high generalisation capability. But often problems are too complex to be solved by a single model. Therefore, ensemble methods combine predictions of multiple models. The CSGE comprises a comprehensible combination based on three different aspects relating to the overall global historical performance, the local-/situation-dependent and time-dependent performance of its ensemble members. The CSGE can be optimised according to arbitrary loss functions making it accessible for a wider range of problems. We introduce a novel training procedure including a hyper-parameter initialisation at its heart. We show that the CSGE approach reaches state-of-the-art performance for both classification and regression tasks. Still, the CSGE allows to quantify the influence of all base estimators by means of the three weighting aspects in a comprehensive way. In terms of Organic computing (OC), our CSGE approach combines multiple base models towards a self-organising complex system. Moreover, we provide a scikit-learn compatible implementation.