Bibi, Adel
Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?
Hammoud, Hasan Abed Al Kader, Prabhu, Ameya, Lim, Ser-Nam, Torr, Philip H. S., Bibi, Adel, Ghanem, Bernard
We revisit the common practice of evaluating adaptation of Online Continual Learning (OCL) algorithms through the metric of online accuracy, which measures the accuracy of the model on the immediate next few samples. However, we show that this metric is unreliable, as even vacuous blind classifiers, which do not use input images for prediction, can achieve unrealistically high online accuracy by exploiting spurious label correlations in the data stream. Our study reveals that existing OCL algorithms can also achieve high online accuracy, but perform poorly in retaining useful information, suggesting that they unintentionally learn spurious label correlations. To address this issue, we propose a novel metric for measuring adaptation based on the accuracy on the near-future samples, where spurious correlations are removed. We benchmark existing OCL approaches using our proposed metric on large-scale datasets under various computational budgets and find that better generalization can be achieved by retaining and reusing past seen information. We believe that our proposed metric can aid in the development of truly adaptive OCL methods. We provide code to reproduce our results at https://github.com/drimpossible/EvalOCL.
Certifying Ensembles: A General Certification Theory with S-Lipschitzness
Petrov, Aleksandar, Eiras, Francisco, Sanyal, Amartya, Torr, Philip H. S., Bibi, Adel
Improving and guaranteeing the robustness of deep learning models has been a topic of intense research. Ensembling, which combines several classifiers to provide a better model, has shown to be beneficial for generalisation, uncertainty estimation, calibration, and mitigating the effects of concept drift. However, the impact of ensembling on certified robustness is less well understood. In this work, we generalise Lipschitz continuity by introducing S-Lipschitz classifiers, which we use to analyse the theoretical robustness of ensembles. Our results are precise conditions when ensembles of robust classifiers are more robust than any constituent classifier, as well as conditions when they are less robust.
Real-Time Evaluation in Online Continual Learning: A New Hope
Ghunaim, Yasir, Bibi, Adel, Alhamoud, Kumail, Alfarra, Motasem, Hammoud, Hasan Abed Al Kader, Prabhu, Ameya, Torr, Philip H. S., Ghanem, Bernard
Current evaluations of Continual Learning (CL) methods typically assume that there is no constraint on training time and computation. This is an unrealistic assumption for any real-world setting, which motivates us to propose: a practical real-time evaluation of continual learning, in which the stream does not wait for the model to complete training before revealing the next data for predictions. To do this, we evaluate current CL methods with respect to their computational costs. We conduct extensive experiments on CLOC, a large-scale dataset containing 39 million time-stamped images with geolocation labels. We show that a simple baseline outperforms state-of-the-art CL methods under this evaluation, questioning the applicability of existing methods in realistic settings. In addition, we explore various CL components commonly used in the literature, including memory sampling strategies and regularization approaches. We find that all considered methods fail to be competitive against our simple baseline. This surprisingly suggests that the majority of existing CL literature is tailored to a specific class of streams that is not practical. We hope that the evaluation we provide will be the first step towards a paradigm shift to consider the computational cost in the development of online continual learning methods.
Don't FREAK Out: A Frequency-Inspired Approach to Detecting Backdoor Poisoned Samples in DNNs
Hammoud, Hasan Abed Al Kader, Bibi, Adel, Torr, Philip H. S., Ghanem, Bernard
In this paper we investigate the frequency sensitivity of Deep Neural Networks (DNNs) when presented with clean samples versus poisoned samples. Our analysis shows significant disparities in frequency sensitivity between these two types of samples. Building on these findings, we propose FREAK, a frequency-based poisoned sample detection algorithm that is simple yet effective. Our experimental results demonstrate the efficacy of FREAK not only against frequency backdoor attacks but also against some spatial attacks. Our work is just the first step in leveraging these insights. We believe that our analysis and proposed defense mechanism will provide a foundation for future research and development of backdoor defenses.
SimCS: Simulation for Online Domain-Incremental Continual Segmentation
Alfarra, Motasem, Cai, Zhipeng, Bibi, Adel, Ghanem, Bernard, Mรผller, Matthias
Continual Learning is a step towards lifelong intelligence where models continuously learn from recently collected data without forgetting previous knowledge. Existing continual learning approaches mostly focus on image classification in the class-incremental setup with clear task boundaries and unlimited computational budget. This work explores Online Domain-Incremental Continual Segmentation~(ODICS), a real-world problem that arises in many applications, \eg, autonomous driving. In ODICS, the model is continually presented with batches of densely labeled images from different domains; computation is limited and no information about the task boundaries is available. In autonomous driving, this may correspond to the realistic scenario of training a segmentation model over time on a sequence of cities. We analyze several existing continual learning methods and show that they do not perform well in this setting despite working well in class-incremental segmentation. We propose SimCS, a parameter-free method complementary to existing ones that leverages simulated data as a continual learning regularizer. Extensive experiments show consistent improvements over different types of continual learning methods that use regularizers and even replay.
DeformRS: Certifying Input Deformations with Randomized Smoothing
Alfarra, Motasem, Bibi, Adel, Khan, Naeemullah, Torr, Philip H. S., Ghanem, Bernard
Deep neural networks are vulnerable to input deformations in the form of vector fields of pixel displacements and to other parameterized geometric deformations e.g. translations, rotations, etc. Current input deformation certification methods either (i) do not scale to deep networks on large input datasets, or (ii) can only certify a specific class of deformations, e.g. only rotations. We reformulate certification in randomized smoothing setting for both general vector field and parameterized deformations and propose DeformRS-VF and DeformRS-Par, respectively. Our new formulation scales to large networks on large input datasets. For instance, DeformRS-Par certifies rich deformations, covering translations, rotations, scaling, affine deformations, and other visually aligned deformations such as ones parameterized by Discrete-Cosine-Transform basis. Extensive experiments on MNIST, CIFAR10 and ImageNet show that DeformRS-Par outperforms existing state-of-the-art in certified accuracy, e.g. improved certified accuracy of 6% against perturbed rotations in the set [-10,10] degrees on ImageNet.
ClusTR: Clustering Training for Robustness
Alfarra, Motasem, Pรฉrez, Juan C., Bibi, Adel, Thabet, Ali, Arbelรกez, Pablo, Ghanem, Bernard
This paper studies how encouraging semantically-aligned features during deep neural network training can increase network robustness. Recent works observed that Adversarial Training leads to robust models, whose learnt features appear to correlate with human perception. Inspired by this connection from robustness to semantics, we study the complementary connection: from semantics to robustness. To do so, we provide a tight robustness certificate for distance-based classification models (clustering-based classifiers), which we leverage to propose ClusTR (Clustering Training for Robustness), a clustering-based and adversary-free training framework to learn robust models. Interestingly, ClusTR outperforms adversarially-trained networks by up to 4\% under strong PGD attacks. Moreover, it can be equipped with simple and fast adversarial training to improve the current state-of-the-art in robustness by 16\%-29\% on CIFAR10, SVHN, and CIFAR100.
Network Moments: Extensions and Sparse-Smooth Attacks
Alfadly, Modar, Bibi, Adel, Botero, Emilio, Alsubaihi, Salman, Ghanem, Bernard
The impressive performance of deep neural networks (DNNs) has immensely strengthened the line of research that aims at theoretically analyzing their effectiveness. This has incited research on the reaction of DNNs to noisy input, namely developing adversarial input attacks and strategies that lead to robust DNNs to these attacks. To that end, in this paper, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network (Affine, ReLU, Affine) subject to Gaussian input. In particular, we generalize the second-moment expression of Bibi et al. to arbitrary input Gaussian distributions, dropping the zero-mean assumption. We show that the new variance expression can be efficiently approximated leading to much tighter variance estimates as compared to the preliminary results of Bibi et al. Moreover, we experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, where we investigate the effect of the linearization sensitivity on the accuracy of the moment estimates. Lastly, we show that the derived expressions can be used to construct sparse and smooth Gaussian adversarial attacks (targeted and non-targeted) that tend to lead to perceptually feasible input attacks.
Constrained K-means with General Pairwise and Cardinality Constraints
Bibi, Adel, Wu, Baoyuan, Ghanem, Bernard
In this work, we study constrained clustering, where constraints are utilized to guide the clustering process. In existing works, two categories of constraints have been widely explored, namely pairwise and cardinality constraints. Pairwise constraints enforce the cluster labels of two instances to be the same (must-link constraints) or different (cannot-link constraints). Cardinality constraints encourage cluster sizes to satisfy a user-specified distribution. However, most existing constrained clustering models can only utilize one category of constraints at a time. In this paper, we enforce the above two categories into a unified clustering model starting with the integer program formulation of the standard K-means. As these two categories provide useful information at different levels, utilizing both of them is expected to allow for better clustering performance. However, the optimization is difficult due to the binary and quadratic constraints in the proposed unified formulation. To alleviate this difficulty, we utilize two techniques: equivalently replacing the binary constraints by the intersection of two continuous constraints; the other is transforming the quadratic constraints into bi-linear constraints by introducing extra variables. Then we derive an equivalent continuous reformulation with simple constraints, which can be efficiently solved by Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experiments on both synthetic and real data demonstrate: (1) when utilizing a single category of constraint, the proposed model is superior to or competitive with state-of-the-art constrained clustering models, and (2) when utilizing both categories of constraints jointly, the proposed model shows better performance than the case of the single category.
Probabilistically True and Tight Bounds for Robust Deep Neural Network Training
Alsubaihi, Salman, Bibi, Adel, Alfadly, Modar, Ghanem, Bernard
Training Deep Neural Networks (DNNs) that are robust to norm bounded adversarial attacks remains an elusive problem. While verification based methods are generally too expensive to robustly train large networks, it was demonstrated in Gowal et al. that bounded input intervals can be inexpensively propagated per layer through large networks. This interval bound propagation (IBP) approach lead to high robustness and was the first to be employed on large networks. However, due to the very loose nature of the IBP bounds, particularly for large networks, the required training procedure is complex and involved. In this paper, we closely examine the bounds of a block of layers composed of an affine layer followed by a ReLU nonlinearity followed by another affine layer. In doing so, we propose probabilistic bounds, true bounds with overwhelming probability, that are provably tighter than IBP bounds in expectation. We then extend this result to deeper networks through blockwise propagation and show that we can achieve orders of magnitudes tighter bounds compared to IBP. With such tight bounds, we demonstrate that a simple standard training procedure can achieve the best robustness-accuracy trade-off across several architectures on both MNIST and CIFAR10.