Goto

Collaborating Authors

 Bian, Tian


Natural Language-Assisted Multi-modal Medication Recommendation

arXiv.org Artificial Intelligence

Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.


Language Agents for Detecting Implicit Stereotypes in Text-to-image Models at Scale

arXiv.org Artificial Intelligence

The recent surge in the research of diffusion models has accelerated the adoption of text-to-image models in various Artificial Intelligence Generated Content (AIGC) commercial products. While these exceptional AIGC products are gaining increasing recognition and sparking enthusiasm among consumers, the questions regarding whether, when, and how these models might unintentionally reinforce existing societal stereotypes remain largely unaddressed. Motivated by recent advancements in language agents, here we introduce a novel agent architecture tailored for stereotype detection in text-to-image models. This versatile agent architecture is capable of accommodating free-form detection tasks and can autonomously invoke various tools to facilitate the entire process, from generating corresponding instructions and images, to detecting stereotypes. We build the stereotype-relevant benchmark based on multiple open-text datasets, and apply this architecture to commercial products and popular open source text-to-image models. We find that these models often display serious stereotypes when it comes to certain prompts about personal characteristics, social cultural context and crime-related aspects. In summary, these empirical findings underscore the pervasive existence of stereotypes across social dimensions, including gender, race, and religion, which not only validate the effectiveness of our proposed approach, but also emphasize the critical necessity of addressing potential ethical risks in the burgeoning realm of AIGC. As AIGC continues its rapid expansion trajectory, with new models and plugins emerging daily in staggering numbers, the challenge lies in the timely detection and mitigation of potential biases within these models.


Revisiting Adversarial Attacks on Graph Neural Networks for Graph Classification

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and its diverse downstream real-world applications. Despite the huge success in learning graph representations, current GNN models have demonstrated their vulnerability to potentially existent adversarial examples on graph-structured data. Existing approaches are either limited to structure attacks or restricted to local information, urging for the design of a more general attack framework on graph classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the global-graph-level information. To address this "global-to-local" attack challenge, we present a novel and general framework to generate adversarial examples via manipulating graph structure and node features. Specifically, we make use of Graph Class Activation Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world benchmarks verify the flexibility and effectiveness of our framework.


Noise-robust Graph Learning by Estimating and Leveraging Pairwise Interactions

arXiv.org Artificial Intelligence

Teaching Graph Neural Networks (GNNs) to accurately classify nodes under severely noisy labels is an important problem in real-world graph learning applications, but is currently underexplored. Although pairwise training methods have demonstrated promise in supervised metric learning and unsupervised contrastive learning, they remain less studied on noisy graphs, where the structural pairwise interactions (PI) between nodes are abundant and thus might benefit label noise learning rather than the pointwise methods. This paper bridges the gap by proposing a pairwise framework for noisy node classification on graphs, which relies on the PI as a primary learning proxy in addition to the pointwise learning from the noisy node class labels. Our proposed framework PI-GNN contributes two novel components: (1) a confidence-aware PI estimation model that adaptively estimates the PI labels, which are defined as whether the two nodes share the same node labels, and (2) a decoupled training approach that leverages the estimated PI labels to regularize a node classification model for robust node classification. Extensive experiments on different datasets and GNN architectures demonstrate the effectiveness of PI-GNN, yielding a promising improvement over the state-of-the-art methods. Code is publicly available at https://github.com/TianBian95/pi-gnn.


Decision Support System for Chronic Diseases Based on Drug-Drug Interactions

arXiv.org Artificial Intelligence

Many patients with chronic diseases resort to multiple medications to relieve various symptoms, which raises concerns about the safety of multiple medication use, as severe drug-drug antagonism can lead to serious adverse effects or even death. This paper presents a Decision Support System, called DSSDDI, based on drug-drug interactions to support doctors prescribing decisions. DSSDDI contains three modules, Drug-Drug Interaction (DDI) module, Medical Decision (MD) module and Medical Support (MS) module. The DDI module learns safer and more effective drug representations from the drug-drug interactions. To capture the potential causal relationship between DDI and medication use, the MD module considers the representations of patients and drugs as context, DDI and patients' similarity as treatment, and medication use as outcome to construct counterfactual links for the representation learning. Furthermore, the MS module provides drug candidates to doctors with explanations. Experiments on the chronic data collected from the Hong Kong Chronic Disease Study Project and a public diagnostic data MIMIC-III demonstrate that DSSDDI can be a reliable reference for doctors in terms of safety and efficiency of clinical diagnosis, with significant improvements compared to baseline methods.


Inverse Graph Identification: Can We Identify Node Labels Given Graph Labels?

arXiv.org Machine Learning

Graph Identification (GI) has long been researched in graph learning and is essential in certain applications (e.g. social community detection). Specifically, GI requires to predict the label/score of a target graph given its collection of node features and edge connections. While this task is common, more complex cases arise in practice---we are supposed to do the inverse thing by, for example, grouping similar users in a social network given the labels of different communities. This triggers an interesting thought: can we identify nodes given the labels of the graphs they belong to? Therefore, this paper defines a novel problem dubbed Inverse Graph Identification (IGI), as opposed to GI. Upon a formal discussion of the variants of IGI, we choose a particular case study of node clustering by making use of the graph labels and node features, with an assistance of a hierarchical graph that further characterizes the connections between different graphs. To address this task, we propose Gaussian Mixture Graph Convolutional Network (GMGCN), a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI and then infers the category of each node via a Gaussian Mixture Layer (GML). The training of GMGCN is further boosted by a proposed consensus loss to take advantage of the structure of the hierarchical graph. Extensive experiments are conducted to test the rationality of the formulation of IGI. We verify the superiority of the proposed method compared to other baselines on several benchmarks we have built up. We will release our codes along with the benchmark data to facilitate more research attention to the IGI problem.