Bialkowski, Alina
Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models
Shen, Shaofei, Zhang, Chenhao, Zhao, Yawen, Bialkowski, Alina, Chen, Weitong Tony, Xu, Miao
Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model. With the increasing emphasis on data privacy, several approaches to machine unlearning have emerged. However, these methods typically rely on complete supervision throughout the unlearning process. Unfortunately, obtaining such supervision, whether for the forgetting or remaining data, can be impractical due to the substantial cost associated with annotating real-world datasets. This challenge prompts us to propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process. Specifically, we introduce a variational approach to approximate the distribution of representations for the remaining data. Leveraging this approximation, we adapt the original model to eliminate information from the forgotten data at the representation level. To further address the issue of lacking supervision information, which hinders alignment with ground truth, we introduce a contrastive loss to facilitate the matching of representations between the remaining data and those of the original model, thus preserving predictive performance. Experimental results across various unlearning tasks demonstrate the effectiveness of our proposed method, Label-Agnostic Forgetting (LAF) without using any labels, which achieves comparable performance to state-of-the-art methods that rely on full supervision information. Furthermore, our approach excels in semi-supervised scenarios, leveraging limited supervision information to outperform fully supervised baselines. This work not only showcases the viability of supervision-free unlearning in deep models but also opens up a new possibility for future research in unlearning at the representation level.
CaMU: Disentangling Causal Effects in Deep Model Unlearning
Shen, Shaofei, Zhang, Chenhao, Bialkowski, Alina, Chen, Weitong, Xu, Miao
Machine unlearning requires removing the information of forgetting data while keeping the necessary information of remaining data. Despite recent advancements in this area, existing methodologies mainly focus on the effect of removing forgetting data without considering the negative impact this can have on the information of the remaining data, resulting in significant performance degradation after data removal. Although some methods try to repair the performance of remaining data after removal, the forgotten information can also return after repair. Such an issue is due to the intricate intertwining of the forgetting and remaining data. Without adequately differentiating the influence of these two kinds of data on the model, existing algorithms take the risk of either inadequate removal of the forgetting data or unnecessary loss of valuable information from the remaining data. To address this shortcoming, the present study undertakes a causal analysis of the unlearning and introduces a novel framework termed Causal Machine Unlearning (CaMU). This framework adds intervention on the information of remaining data to disentangle the causal effects between forgetting data and remaining data. Then CaMU eliminates the causal impact associated with forgetting data while concurrently preserving the causal relevance of the remaining data. Comprehensive empirical results on various datasets and models suggest that CaMU enhances performance on the remaining data and effectively minimizes the influences of forgetting data. Notably, this work is the first to interpret deep model unlearning tasks from a new perspective of causality and provide a solution based on causal analysis, which opens up new possibilities for future research in deep model unlearning.
Characterizing Multi-Agent Team Behavior from Partial Team Tracings: Evidence from the English Premier League
Lucey, Patrick (Disney Research Pittsburgh) | Bialkowski, Alina (Queensland University of Technology and Disney Research Pittsburgh) | Carr, Peter (Disney Research Pittsburgh) | Foote, Eric (Disney Research Pittsburgh) | Matthews, Iain (Disney Research Pittsburgh)
Real-world AI systems have been recently deployed which can automatically analyze the plan and tactics of tennis players. As the game-state is updated regularly at short intervals (i.e. point-level), a library of successful and unsuccessful plans of a player can be learnt over time. Given the relative strengths and weaknesses of a player’s plans, a set of proven plans or tactics from the library that characterize a player can be identified. For low-scoring, continuous team sports like soccer, such analysis for multi-agent teams does not exist as the game is not segmented into “discretized” plays (i.e. plans), making it difficult to obtain a library that characterizes a team’s behavior. Additionally, as player tracking data is costly and difficult to obtain, we only have partial team tracings in the form of ball actions which makes this problem even more difficult. In this paper, we propose a method to overcome these issues by representing team behavior via play-segments, which are spatio-temporal descriptions of ball movement over fixed windows of time. Using these representations we can characterize team behavior from entropy maps, which give a measure of predictability of team behaviors across the field. We show the efficacy and applicability of our method on the 2010-2011 English Premier League soccer data.