Bhattacharya, Sourangshu
EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning
Purohit, Kiran, V, Venktesh, Devalla, Raghuram, Yerragorla, Krishna Mohan, Bhattacharya, Sourangshu, Anand, Avishek
Answering reasoning-based complex questions over text and hybrid sources, including tables, is a challenging task. Recent advances in large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars). A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic). Static exemplars provide faster inference times and increased robustness across a distribution of test examples. In this paper, we propose an algorithm for static exemplar subset selection for complex reasoning tasks. We introduce EXPLORA, a novel exploration method designed to estimate the parameters of the scoring function, which evaluates exemplar subsets without incorporating confidence information. EXPLORA significantly reduces the number of LLM calls to ~11% of those required by state-of-the-art methods and achieves a substantial performance improvement of 12.24%. We open-source our code and data (https://github.com/kiranpurohit/EXPLORA).
VTruST: Controllable value function based subset selection for Data-Centric Trustworthy AI
Das, Soumi, Nag, Shubhadip, Sharma, Shreyyash, Bhattacharya, Suparna, Bhattacharya, Sourangshu
Trustworthy AI is crucial to the widespread adoption of AI in high-stakes applications with fairness, robustness, and accuracy being some of the key trustworthiness metrics. In this work, we propose a controllable framework for data-centric trustworthy AI (DCTAI)- VTruST, that allows users to control the trade-offs between the different trustworthiness metrics of the constructed training datasets. A key challenge in implementing an efficient DCTAI framework is to design an online value-function-based training data subset selection algorithm. We pose the training data valuation and subset selection problem as an online sparse approximation formulation. We propose a novel online version of the Orthogonal Matching Pursuit (OMP) algorithm for solving this problem. Experimental results show that VTruST outperforms the state-of-the-art baselines on social, image, and scientific datasets. We also show that the data values generated by VTruST can provide effective data-centric explanations for different trustworthiness metrics.
In-Context Ability Transfer for Question Decomposition in Complex QA
V, Venktesh, Bhattacharya, Sourangshu, Anand, Avishek
Answering complex questions is a challenging task that requires question decomposition and multistep reasoning for arriving at the solution. While existing supervised and unsupervised approaches are specialized to a certain task and involve training, recently proposed prompt-based approaches offer generalizable solutions to tackle a wide variety of complex question-answering (QA) tasks. However, existing prompt-based approaches that are effective for complex QA tasks involve expensive hand annotations from experts in the form of rationales and are not generalizable to newer complex QA scenarios and tasks. We propose, icat (In-Context Ability Transfer) which induces reasoning capabilities in LLMs without any LLM fine-tuning or manual annotation of in-context samples. We transfer the ability to decompose complex questions to simpler questions or generate step-by-step rationales to LLMs, by careful selection from available data sources of related tasks. We also propose an automated uncertainty-aware exemplar selection approach for selecting examples from transfer data sources. Finally, we conduct large-scale experiments on a variety of complex QA tasks involving numerical reasoning, compositional complex QA, and heterogeneous complex QA which require decomposed reasoning. We show that ICAT convincingly outperforms existing prompt-based solutions without involving any model training, showcasing the benefits of re-using existing abilities.
LearnDefend: Learning to Defend against Targeted Model-Poisoning Attacks on Federated Learning
Purohit, Kiran, Das, Soumi, Bhattacharya, Sourangshu, Rana, Santu
Targeted model poisoning attacks pose a significant threat to federated learning systems. Recent studies show that edge-case targeted attacks, which target a small fraction of the input space are nearly impossible to counter using existing fixed defense strategies. In this paper, we strive to design a learned-defense strategy against such attacks, using a small defense dataset. The defense dataset can be collected by the central authority of the federated learning task, and should contain a mix of poisoned and clean examples. The proposed framework, LearnDefend, estimates the probability of a client update being malicious. The examples in defense dataset need not be pre-marked as poisoned or clean. We also learn a poisoned data detector model which can be used to mark each example in the defense dataset as clean or poisoned. We estimate the poisoned data detector and the client importance models in a coupled optimization approach. Our experiments demonstrate that LearnDefend is capable of defending against state-of-the-art attacks where existing fixed defense strategies fail. We also show that LearnDefend is robust to size and noise in the marking of clean examples in the defense dataset.
Opponent-aware Role-based Learning in Team Competitive Markov Games
Koley, Paramita, Maiti, Aurghya, Ganguly, Niloy, Bhattacharya, Sourangshu
Team competition in multi-agent Markov games is an increasingly important setting for multi-agent reinforcement learning, due to its general applicability in modeling many real-life situations. Multi-agent actor-critic methods are the most suitable class of techniques for learning optimal policies in the team competition setting, due to their flexibility in learning agent-specific critic functions, which can also learn from other agents. In many real-world team competitive scenarios, the roles of the agents naturally emerge, in order to aid in coordination and collaboration within members of the teams. However, existing methods for learning emergent roles rely heavily on the Q-learning setup which does not allow learning of agent-specific Q-functions. In this paper, we propose RAC, a novel technique for learning the emergent roles of agents within a team that are diverse and dynamic. In the proposed method, agents also benefit from predicting the roles of the agents in the opponent team. RAC uses the actor-critic framework with role encoder and opponent role predictors for learning an optimal policy. Experimentation using 2 games demonstrates that the policies learned by RAC achieve higher rewards than those learned using state-of-the-art baselines. Moreover, experiments suggest that the agents in a team learn diverse and opponent-aware policies.
Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental Design Approach
Koley, Paramita, Saha, Avirup, Bhattacharya, Sourangshu, Ganguly, Niloy, De, Abir
The networked opinion diffusion in online social networks (OSN) is often governed by the two genres of opinions - endogenous opinions that are driven by the influence of social contacts among users, and exogenous opinions which are formed by external effects like news, feeds etc. Accurate demarcation of endogenous and exogenous messages offers an important cue to opinion modeling, thereby enhancing its predictive performance. In this paper, we design a suite of unsupervised classification methods based on experimental design approaches, in which, we aim to select the subsets of events which minimize different measures of mean estimation error. In more detail, we first show that these subset selection tasks are NP-Hard. Then we show that the associated objective functions are weakly submodular, which allows us to cast efficient approximation algorithms with guarantees. Finally, we validate the efficacy of our proposal on various real-world datasets crawled from Twitter as well as diverse synthetic datasets. Our experiments range from validating prediction performance on unsanitized and sanitized events to checking the effect of selecting optimal subsets of various sizes. Through various experiments, we have found that our method offers a significant improvement in accuracy in terms of opinion forecasting, against several competitors.
Kernels on Attributed Pointsets with Applications
Parsana, Mehul, Bhattacharya, Sourangshu, Bhattacharya, Chiru, Ramakrishnan, K.
This paper introduces kernels on attributed pointsets, which are sets of vectors embedded in an euclidean space. The embedding gives the notion of neighborhood, which is used to define positive semidefinite kernels on pointsets. Two novel kernels on neighborhoods are proposed, one evaluating the attribute similarity and the other evaluating shape similarity. Shape similarity function is motivated from spectral graph matching techniques. The kernels are tested on three real life applications: face recognition, photo album tagging, and shot annotation in video sequences, with encouraging results.
Task-Specific Representation Learning for Web-Scale Entity Disambiguation
Kar, Rijula (IIT, Kharagpur) | Reddy, Susmija (IIT, Kharagpur) | Bhattacharya, Sourangshu (IIT, Kharagpur) | Dasgupta, Anirban (IIT, Gandhinagar) | Chakrabarti, Soumen (IIT, Bombay)
Named entity disambiguation (NED) is a central problem in information extraction. The goal is to link entities in a knowledge graph (KG) to their mention spans in unstructured text. Each distinct mention span (like John Smith, Jordan or Apache) represents a multi-class classification task. NED can therefore be modeled as a multitask problem with tens of millions of tasks for realistic KGs. We initiate an investigation into neural representations, network architectures, and training protocols for multitask NED. Specifically, we propose a task-sensitive representation learning framework that learns mention dependent representations, followed by a common classifier. Parameter learning in our framework can be decomposed into solving multiple smaller problems involving overlapping groups of tasks. We prove bounds for excess risk, which provide additional insight into the problem of multi-task representation learning. While remaining practical in terms of training memory and time requirements, our approach outperforms recent strong baselines, on four benchmark data sets.
Distributed Weighted Parameter Averaging for SVM Training on Big Data
Das, Ayan (Indian Institute of Technology, Kharagpur) | Chanda, Raghuveer (Indian Institute of Technology, Kharagpur) | Agrawal, Smriti (Indian Institute of Technology, Kharagpur) | Bhattacharya, Sourangshu (Indian Institute of Technology, Kharagpur)
Two popular approaches for distributed training of SVMs on big data are parameter averaging and alternating direction method of multipliers (ADMM). Parameter averaging is efficient but suffers from loss of accuracy with increase in number of partitions, while ADMM in the feature space is accurate but suffers from slow convergence. In this paper, we report a hybrid approach called weighted parameter averaging (WPA), which optimizes the regularized hinge loss with respect to weights on parameters. The problem is shown to be same as solving SVM in a projected space. We also demonstrate an O(1/N) stability bound on final hypothesis given by WPA, using novel proof techniques. Experimental results on a variety of toy and real world datasets show that our approach is significantly more accurate than parameter averaging for high number of partitions. It is also seen the proposed method enjoys much faster convergence compared to ADMM in feature space.
Learning and Forecasting Opinion Dynamics in Social Networks
De, Abir, Valera, Isabel, Ganguly, Niloy, Bhattacharya, Sourangshu, Rodriguez, Manuel Gomez
Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often update their opinions about a particular topic by learning from the opinions shared by their friends. In this context, can we learn a data-driven model of opinion dynamics that is able to accurately forecast users' opinions? In this paper, we introduce SLANT, a probabilistic modeling framework of opinion dynamics, which represents users' opinions over time by means of marked jump diffusion stochastic differential equations, and allows for efficient model simulation and parameter estimation from historical fine grained event data. We then leverage our framework to derive a set of efficient predictive formulas for opinion forecasting and identify conditions under which opinions converge to a steady state. Experiments on data gathered from Twitter show that our model provides a good fit to the data and our formulas achieve more accurate forecasting than alternatives.