Goto

Collaborating Authors

 Bhattacharya, Bishakh


Autonomous Navigation of 4WIS4WID Agricultural Field Mobile Robot using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

In the futuristic agricultural fields compatible with Agriculture 4.0, robots are envisaged to navigate through crops to perform functions like pesticide spraying and fruit harvesting, which are complex tasks due to factors such as non-geometric internal obstacles, space constraints, and outdoor conditions. In this paper, we attempt to employ Deep Reinforcement Learning (DRL) to solve the problem of 4WIS4WID mobile robot navigation in a structured, automated agricultural field. This paper consists of three sections: parameterization of four-wheel steering configurations, crop row tracking using DRL, and autonomous navigation of 4WIS4WID mobile robot using DRL through multiple crop rows. We show how to parametrize various configurations of four-wheel steering to two variables. This includes symmetric four-wheel steering, zero-turn, and an additional steering configuration that allows the 4WIS4WID mobile robot to move laterally. Using DRL, we also followed an irregularly shaped crop row with symmetric four-wheel steering. In the multiple crop row simulation environment, with the help of waypoints, we effectively performed point-to-point navigation. Finally, a comparative analysis of various DRL algorithms that use continuous actions was carried out.


Inverse design of potential metastructures inspired from Indian medieval architectural elements

arXiv.org Artificial Intelligence

In this study, we immerse in the intricate world of patterns, examining the structural details of Indian medieval architecture for the discovery of motifs with great application potential from the mechanical metastructure perspective. The motifs that specifically engrossed us are derived from the tomb of I'timad-ud-Daula, situated in the city of Agra, close to the Taj Mahal. In an exploratory study, we designed nine interlaced metastructures inspired from the tomb's motifs. We fabricated the metastructures using additive manufacturing and studied their vibration characteristics experimentally and numerically. We also investigated bandgap modulation with metallic inserts in honeycomb interlaced metastructures. The comprehensive study of these metastructure panels reveals their high performance in controlling elastic wave propagation and generating suitable frequency bandgaps, hence having potential applications as waveguides for noise and vibration control. Finally, we developed a novel AI-based model trained on numerical datasets for the inverse design of metastructures with a desired bandgap.


A Novel Approach to Tomato Harvesting Using a Hybrid Gripper with Semantic Segmentation and Keypoint Detection

arXiv.org Artificial Intelligence

Current agriculture and farming industries are able to reap advancements in robotics and automation technology to harvest fruits and vegetables using robots with adaptive grasping forces based on the compliance or softness of the fruit or vegetable. A successful operation depends on using a gripper that can adapt to the mechanical properties of the crops. This paper proposes a new robotic harvesting approach for tomato fruit using a novel hybrid gripper with a soft caging effect. It uses its six flexible passive auxetic structures based on fingers with rigid outer exoskeletons for good gripping strength and shape conformability. The gripper is actuated through a scotch-yoke mechanism using a servo motor. To perform tomato picking operations through a gripper, a vision system based on a depth camera and RGB camera implements the fruit identification process. It incorporates deep learning-based keypoint detection of the tomato's pedicel and body for localization in an occluded and variable ambient light environment and semantic segmentation of ripe and unripe tomatoes. In addition, robust trajectory planning of the robotic arm based on input from the vision system and control of robotic gripper movements are carried out for secure tomato handling. The tunable grasping force of the gripper would allow the robotic handling of fruits with a broad range of compliance.


An anthropomorphic continuum robotic neck actuated by SMA spring-based multipennate muscle architecture

arXiv.org Artificial Intelligence

This work presents a novel Shape Memory Alloy spring actuated continuum robotic neck that derives inspiration from pennate muscle architecture. The proposed design has 2DOF, and experimental studies reveal that the designed joint can replicate the human head's anthropomorphic range of motion. We enumerate the analytical modelling for SMA actuators and the kinematic model of the proposed design configuration. A series of experiments were conducted to assess the performance of the anthropomorphic neck by measuring the range of motion with varying input currents. Furthermore, the experiments were conducted to validate the analytical model of the SMA Multiphysics and the continuum backbone. The existing humanoid necks have been powered by conventional actuators that have relatively low energy efficiency and are prone to wear. The current research envisages application of nonconventional actuator such as SMA springs with specific geometric configuration yielding high power to weight ratio that delivers smooth motion for continuum robots as demonstrated in this present work.