Bhattacharjya, Debarun
FactReasoner: A Probabilistic Approach to Long-Form Factuality Assessment for Large Language Models
Marinescu, Radu, Bhattacharjya, Debarun, Lee, Junkyu, Tchrakian, Tigran, Cano, Javier Carnerero, Hou, Yufang, Daly, Elizabeth, Pascale, Alessandra
Large language models (LLMs) have demonstrated vast capabilities on generative tasks in recent years, yet they struggle with guaranteeing the factual correctness of the generated content. This makes these models unreliable in realistic situations where factually accurate responses are expected. In this paper, we propose FactReasoner, a new factuality assessor that relies on probabilistic reasoning to assess the factuality of a long-form generated response. Specifically, FactReasoner decomposes the response into atomic units, retrieves relevant contexts for them from an external knowledge source, and constructs a joint probability distribution over the atoms and contexts using probabilistic encodings of the logical relationships (entailment, contradiction) between the textual utterances corresponding to the atoms and contexts. FactReasoner then computes the posterior probability of whether atomic units in the response are supported by the retrieved contexts. Our experiments on labeled and unlabeled benchmark datasets demonstrate clearly that FactReasoner improves considerably over state-of-the-art prompt-based approaches in terms of both factual precision and recall.
Distilling Event Sequence Knowledge From Large Language Models
Wadhwa, Somin, Hassanzadeh, Oktie, Bhattacharjya, Debarun, Barker, Ken, Ni, Jian
Event sequence models have been found to be highly effective in the analysis and prediction of events. Building such models requires availability of abundant high-quality event sequence data. In certain applications, however, clean structured event sequences are not available, and automated sequence extraction results in data that is too noisy and incomplete. In this work, we explore the use of Large Language Models (LLMs) to generate event sequences that can effectively be used for probabilistic event model construction. This can be viewed as a mechanism of distilling event sequence knowledge from LLMs. Our approach relies on a Knowledge Graph (KG) of event concepts with partial causal relations to guide the generative language model for causal event sequence generation. We show that our approach can generate high-quality event sequences, filling a knowledge gap in the input KG. Furthermore, we explore how the generated sequences can be leveraged to discover useful and more complex structured knowledge from pattern mining and probabilistic event models. We release our sequence generation code and evaluation framework, as well as corpus of event sequence data.
Foundation Model Sherpas: Guiding Foundation Models through Knowledge and Reasoning
Bhattacharjya, Debarun, Lee, Junkyu, Agravante, Don Joven, Ganesan, Balaji, Marinescu, Radu
Foundation models (FMs) such as large language models have revolutionized the field of AI by showing remarkable performance in various tasks. However, they exhibit numerous limitations that prevent their broader adoption in many real-world systems, which often require a higher bar for trustworthiness and usability. Since FMs are trained using loss functions aimed at reconstructing the training corpus in a self-supervised manner, there is no guarantee that the model's output aligns with users' preferences for a specific task at hand. In this survey paper, we propose a conceptual framework that encapsulates different modes by which agents could interact with FMs and guide them suitably for a set of tasks, particularly through knowledge augmentation and reasoning. Our framework elucidates agent role categories such as updating the underlying FM, assisting with prompting the FM, and evaluating the FM output. We also categorize several state-of-the-art approaches into agent interaction protocols, highlighting the nature and extent of involvement of the various agent roles. The proposed framework provides guidance for future directions to further realize the power of FMs in practical AI systems.
Self-Supervised Contrastive Pre-Training for Multivariate Point Processes
Shou, Xiao, Subramanian, Dharmashankar, Bhattacharjya, Debarun, Gao, Tian, Bennet, Kristin P.
Self-supervision is one of the hallmarks of representation learning in the increasingly popular suite of foundation models including large language models such as BERT and GPT-3, but it has not been pursued in the context of multivariate event streams, to the best of our knowledge. We introduce a new paradigm for self-supervised learning for multivariate point processes using a transformer encoder. Specifically, we design a novel pre-training strategy for the encoder where we not only mask random event epochs but also insert randomly sampled "void" epochs where an event does not occur; this differs from the typical discrete-time pretext tasks such as word-masking in BERT but expands the effectiveness of masking to better capture continuous-time dynamics. To improve downstream tasks, we introduce a contrasting module that compares real events to simulated void instances. The pre-trained model can subsequently be fine-tuned on a potentially much smaller event dataset, similar conceptually to the typical transfer of popular pre-trained language models. We demonstrate the effectiveness of our proposed paradigm on the next-event prediction task using synthetic datasets and 3 real applications, observing a relative performance boost of as high as up to 20% compared to state-of-the-art models.
Event Prediction using Case-Based Reasoning over Knowledge Graphs
Shirai, Sola, Bhattacharjya, Debarun, Hassanzadeh, Oktie
Applying link prediction (LP) methods over knowledge graphs (KG) for tasks such as causal event prediction presents an exciting opportunity. However, typical LP models are ill-suited for this task as they are incapable of performing inductive link prediction for new, unseen event entities and they require retraining as knowledge is added or changed in the underlying KG. We introduce a case-based reasoning model, EvCBR, to predict properties about new consequent events based on similar cause-effect events present in the KG. EvCBR uses statistical measures to identify similar events and performs path-based predictions, requiring no training step. To generalize our methods beyond the domain of event prediction, we frame our task as a 2-hop LP task, where the first hop is a causal relation connecting a cause event to a new effect event and the second hop is a property about the new event which we wish to predict. The effectiveness of our method is demonstrated using a novel dataset of newsworthy events with causal relations curated from Wikidata, where EvCBR outperforms baselines including translational-distance-based, GNN-based, and rule-based LP models.
Logical Credal Networks
Qian, Haifeng, Marinescu, Radu, Gray, Alexander, Bhattacharjya, Debarun, Barahona, Francisco, Gao, Tian, Riegel, Ryan, Sahu, Pravinda
This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability. Given imprecise information represented by probability bounds and conditional probability bounds of logic formulas, this logic specifies a set of probability distributions over all interpretations. On the one hand, our approach allows propositional and first-order logic formulas with few restrictions, e.g., without requiring acyclicity. On the other hand, it has a Markov condition similar to Bayesian networks and Markov random fields that is critical in real-world applications. Having both these properties makes this logic unique, and we investigate its performance on maximum a posteriori inference tasks, including solving Mastermind games with uncertainty and detecting credit card fraud. The results show that the proposed method outperforms existing approaches, and its advantage lies in aggregating multiple sources of imprecise information.
Proximal Graphical Event Models
Bhattacharjya, Debarun, Subramanian, Dharmashankar, Gao, Tian
Event datasets include events that occur irregularly over the timeline and are prevalent in numerous domains. We introduce proximal graphical event models (PGEM) as a representation of such datasets. PGEMs belong to a broader family of models that characterize relationships between various types of events, where the rate of occurrence of an event type depends only on whether or not its parents have occurred in the most recent history. The main advantage over the state of the art models is that they are entirely data driven and do not require additional inputs from the user, which can require knowledge of the domain such as choice of basis functions or hyperparameters in graphical event models. We theoretically justify our learning of optimal windows for parental history and the choices of parental sets, and the algorithm are sound and complete in terms of parent structure learning. We present additional efficient heuristics for learning PGEMs from data, demonstrating their effectiveness on synthetic and real datasets.
Proximal Graphical Event Models
Bhattacharjya, Debarun, Subramanian, Dharmashankar, Gao, Tian
Event datasets include events that occur irregularly over the timeline and are prevalent in numerous domains. We introduce proximal graphical event models (PGEM) as a representation of such datasets. PGEMs belong to a broader family of models that characterize relationships between various types of events, where the rate of occurrence of an event type depends only on whether or not its parents have occurred in the most recent history. The main advantage over the state of the art models is that they are entirely data driven and do not require additional inputs from the user, which can require knowledge of the domain such as choice of basis functions or hyperparameters in graphical event models. We theoretically justify our learning of optimal windows for parental history and the choices of parental sets, and the algorithm are sound and complete in terms of parent structure learning. We present additional efficient heuristics for learning PGEMs from data, demonstrating their effectiveness on synthetic and real datasets.
Evaluating influence diagrams with decision circuits
Bhattacharjya, Debarun, Shachter, Ross D.
Although a number of related algorithms have been developed to evaluate influence diagrams, exploiting the conditional independence in the diagram, the exact solution has remained intractable for many important problems. In this paper we introduce decision circuits as a means to exploit the local structure usually found in decision problems and to improve the performance of influence diagram analysis. This work builds on the probabilistic inference algorithms using arithmetic circuits to represent Bayesian belief networks [Darwiche, 2003]. Once compiled, these arithmetic circuits efficiently evaluate probabilistic queries on the belief network, and methods have been developed to exploit both the global and local structure of the network. We show that decision circuits can be constructed in a similar fashion and promise similar benefits.