Bhatia, Deepti
BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory Information
Kazemi, Mehran, Yuan, Quan, Bhatia, Deepti, Kim, Najoung, Xu, Xin, Imbrasaite, Vaiva, Ramachandran, Deepak
Automated reasoning with unstructured natural text is a key requirement for many potential applications of NLP and for developing robust AI systems. Recently, Language Models (LMs) have demonstrated complex reasoning capacities even without any finetuning. However, existing evaluation for automated reasoning assumes access to a consistent and coherent set of information over which models reason. When reasoning in the real-world, the available information is frequently inconsistent or contradictory, and therefore models need to be equipped with a strategy to resolve such conflicts when they arise. One widely-applicable way of resolving conflicts is to impose preferences over information sources (e.g., based on source credibility or information recency) and adopt the source with higher preference. In this paper, we formulate the problem of reasoning with contradictory information guided by preferences over sources as the classical problem of defeasible reasoning, and develop a dataset called BoardgameQA for measuring the reasoning capacity of LMs in this setting. BoardgameQA also incorporates reasoning with implicit background knowledge, to better reflect reasoning problems in downstream applications. We benchmark various LMs on BoardgameQA and the results reveal a significant gap in the reasoning capacity of state-of-the-art LMs on this problem, showing that reasoning with conflicting information does not surface out-of-the-box in LMs. While performance can be improved with finetuning, it nevertheless remains poor.
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Kazemi, Mehran, Kim, Najoung, Bhatia, Deepti, Xu, Xin, Ramachandran, Deepak
Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling
Shen, Jonathan, Nguyen, Patrick, Wu, Yonghui, Chen, Zhifeng, Chen, Mia X., Jia, Ye, Kannan, Anjuli, Sainath, Tara, Cao, Yuan, Chiu, Chung-Cheng, He, Yanzhang, Chorowski, Jan, Hinsu, Smit, Laurenzo, Stella, Qin, James, Firat, Orhan, Macherey, Wolfgang, Gupta, Suyog, Bapna, Ankur, Zhang, Shuyuan, Pang, Ruoming, Weiss, Ron J., Prabhavalkar, Rohit, Liang, Qiao, Jacob, Benoit, Liang, Bowen, Lee, HyoukJoong, Chelba, Ciprian, Jean, Sébastien, Li, Bo, Johnson, Melvin, Anil, Rohan, Tibrewal, Rajat, Liu, Xiaobing, Eriguchi, Akiko, Jaitly, Navdeep, Ari, Naveen, Cherry, Colin, Haghani, Parisa, Good, Otavio, Cheng, Youlong, Alvarez, Raziel, Caswell, Isaac, Hsu, Wei-Ning, Yang, Zongheng, Wang, Kuan-Chieh, Gonina, Ekaterina, Tomanek, Katrin, Vanik, Ben, Wu, Zelin, Jones, Llion, Schuster, Mike, Huang, Yanping, Chen, Dehao, Irie, Kazuki, Foster, George, Richardson, John, Macherey, Klaus, Bruguier, Antoine, Zen, Heiga, Raffel, Colin, Kumar, Shankar, Rao, Kanishka, Rybach, David, Murray, Matthew, Peddinti, Vijayaditya, Krikun, Maxim, Bacchiani, Michiel A. U., Jablin, Thomas B., Suderman, Rob, Williams, Ian, Lee, Benjamin, Bhatia, Deepti, Carlson, Justin, Yavuz, Semih, Zhang, Yu, McGraw, Ian, Galkin, Max, Ge, Qi, Pundak, Golan, Whipkey, Chad, Wang, Todd, Alon, Uri, Lepikhin, Dmitry, Tian, Ye, Sabour, Sara, Chan, William, Toshniwal, Shubham, Liao, Baohua, Nirschl, Michael, Rondon, Pat
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.