Bhat, Suma
ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?
Meshram, Pragati Shuddhodhan, Karthikeyan, Swetha, Bhavya, null, Bhat, Suma
Multi-modal Large Language Models (MLLMs) are gaining significant attention for their ability to process multi-modal data, providing enhanced contextual understanding of complex problems. MLLMs have demonstrated exceptional capabilities in tasks such as Visual Question Answering (VQA); however, they often struggle with fundamental engineering problems, and there is a scarcity of specialized datasets for training on topics like digital electronics. To address this gap, we propose a benchmark dataset called ElectroVizQA specifically designed to evaluate MLLMs' performance on digital electronic circuit problems commonly found in undergraduate curricula. This dataset, the first of its kind tailored for the VQA task in digital electronics, comprises approximately 626 visual questions, offering a comprehensive overview of digital electronics topics. This paper rigorously assesses the extent to which MLLMs can understand and solve digital electronic circuit questions, providing insights into their capabilities and limitations within this specialized domain. By introducing this benchmark dataset, we aim to motivate further research and development in the application of MLLMs to engineering education, ultimately bridging the performance gap and enhancing the efficacy of these models in technical fields.
IEKG: A Commonsense Knowledge Graph for Idiomatic Expressions
Zeng, Ziheng, Cheng, Kellen Tan, Nanniyur, Srihari Venkat, Zhou, Jianing, Bhat, Suma
Idiomatic expression (IE) processing and comprehension have challenged pre-trained language models (PTLMs) because their meanings are non-compositional. Unlike prior works that enable IE comprehension through fine-tuning PTLMs with sentences containing IEs, in this work, we construct IEKG, a commonsense knowledge graph for figurative interpretations of IEs. This extends the established ATOMIC2020 graph, converting PTLMs into knowledge models (KMs) that encode and infer commonsense knowledge related to IE use. Experiments show that various PTLMs can be converted into KMs with IEKG. We verify the quality of IEKG and the ability of the trained KMs with automatic and human evaluation. Through applications in natural language understanding, we show that a PTLM injected with knowledge from IEKG exhibits improved IE comprehension ability and can generalize to IEs unseen during training.
Unified Representation for Non-compositional and Compositional Expressions
Zeng, Ziheng, Bhat, Suma
Accurate processing of non-compositional language relies on generating good representations for such expressions. In this work, we study the representation of language non-compositionality by proposing a language model, PIER, that builds on BART and can create semantically meaningful and contextually appropriate representations for English potentially idiomatic expressions (PIEs). PIEs are characterized by their non-compositionality and contextual ambiguity in their literal and idiomatic interpretations. Via intrinsic evaluation on embedding quality and extrinsic evaluation on PIE processing and NLU tasks, we show that representations generated by PIER result in 33% higher homogeneity score for embedding clustering than BART, whereas 3.12% and 3.29% gains in accuracy and sequence accuracy for PIE sense classification and span detection compared to the state-of-the-art IE representation model, GIEA. These gains are achieved without sacrificing PIER's performance on NLU tasks (+/- 1% accuracy) compared to BART.
CRISP: Curriculum based Sequential Neural Decoders for Polar Code Family
Hebbar, S Ashwin, Nadkarni, Viraj, Makkuva, Ashok Vardhan, Bhat, Suma, Oh, Sewoong, Viswanath, Pramod
Polar codes are widely used state-of-the-art codes for reliable communication that have recently been included in the 5th generation wireless standards (5G). However, there remains room for the design of polar decoders that are both efficient and reliable in the short blocklength regime. Motivated by recent successes of data-driven channel decoders, we introduce a novel $\textbf{C}$ur$\textbf{RI}$culum based $\textbf{S}$equential neural decoder for $\textbf{P}$olar codes (CRISP). We design a principled curriculum, guided by information-theoretic insights, to train CRISP and show that it outperforms the successive-cancellation (SC) decoder and attains near-optimal reliability performance on the Polar(32,16) and Polar(64,22) codes. The choice of the proposed curriculum is critical in achieving the accuracy gains of CRISP, as we show by comparing against other curricula. More notably, CRISP can be readily extended to Polarization-Adjusted-Convolutional (PAC) codes, where existing SC decoders are significantly less reliable. To the best of our knowledge, CRISP constructs the first data-driven decoder for PAC codes and attains near-optimal performance on the PAC(32,16) code.
Abusive Language Detection in Heterogeneous Contexts: Dataset Collection and the Role of Supervised Attention
Gong, Hongyu, Valido, Alberto, Ingram, Katherine M., Fanti, Giulia, Bhat, Suma, Espelage, Dorothy L.
Abusive language is a massive problem in online social platforms. Existing abusive language detection techniques are particularly ill-suited to comments containing heterogeneous abusive language patterns, i.e., both abusive and non-abusive parts. This is due in part to the lack of datasets that explicitly annotate heterogeneity in abusive language. We tackle this challenge by providing an annotated dataset of abusive language in over 11,000 comments from YouTube. We account for heterogeneity in this dataset by separately annotating both the comment as a whole and the individual sentences that comprise each comment. We then propose an algorithm that uses a supervised attention mechanism to detect and categorize abusive content using multi-task learning. We empirically demonstrate the challenges of using traditional techniques on heterogeneous content and the comparative gains in performance of the proposed approach over state-of-the-art methods.
All-but-the-Top: Simple and Effective Postprocessing for Word Representations
Mu, Jiaqi, Bhat, Suma, Viswanath, Pramod
Real-valued word representations have transformed NLP applications; popular examples are word2vec and GloVe, recognized for their ability to capture linguistic regularities. In this paper, we demonstrate a {\em very simple}, and yet counter-intuitive, postprocessing technique -- eliminate the common mean vector and a few top dominating directions from the word vectors -- that renders off-the-shelf representations {\em even stronger}. The postprocessing is empirically validated on a variety of lexical-level intrinsic tasks (word similarity, concept categorization, word analogy) and sentence-level tasks (semantic textural similarity and { text classification}) on multiple datasets and with a variety of representation methods and hyperparameter choices in multiple languages; in each case, the processed representations are consistently better than the original ones.
Geometry of Compositionality
Gong, Hongyu (University of Illinois at Urbana Champaign) | Bhat, Suma (University of Illinois at Urbana Champaign) | Viswanath, Pramod (University of Illinois at Urbana Champaign)
This paper proposes a simple test for compositionality (i.e., literal usage) of a word or phrase in a context-specific way. The test is computationally simple, relying on no external resources and only uses a set of trained word vectors. Experiments show that the proposed method is competitive with state of the art and displays high accuracy in context-specific compositionality detection of a variety of natural language phenomena (idiomaticity, sarcasm, metaphor) for different datasets in multiple languages. The key insight is to connect compositionality to a curious geometric property of word embeddings, which is of independent interest.
Geometry of Polysemy
Mu, Jiaqi, Bhat, Suma, Viswanath, Pramod
Vector representations of words have heralded a transformational approach to classical problems in NLP; the most popular example is word2vec. However, a single vector does not suffice to model the polysemous nature of many (frequent) words, i.e., words with multiple meanings. In this paper, we propose a three-fold approach for unsupervised polysemy modeling: (a) context representations, (b) sense induction and disambiguation and (c) lexeme (as a word and sense pair) representations. A key feature of our work is the finding that a sentence containing a target word is well represented by a low rank subspace, instead of a point in a vector space. We then show that the subspaces associated with a particular sense of the target word tend to intersect over a line (one-dimensional subspace), which we use to disambiguate senses using a clustering algorithm that harnesses the Grassmannian geometry of the representations. The disambiguation algorithm, which we call $K$-Grassmeans, leads to a procedure to label the different senses of the target word in the corpus -- yielding lexeme vector representations, all in an unsupervised manner starting from a large (Wikipedia) corpus in English. Apart from several prototypical target (word,sense) examples and a host of empirical studies to intuit and justify the various geometric representations, we validate our algorithms on standard sense induction and disambiguation datasets and present new state-of-the-art results.