Goto

Collaborating Authors

 Bhardwaj, Ankit


Comprehensive Monitoring of Air Pollution Hotspots Using Sparse Sensor Networks

arXiv.org Artificial Intelligence

Urban air pollution hotspots pose significant health risks, yet their detection and analysis remain limited by the sparsity of public sensor networks. This paper addresses this challenge by combining predictive modeling and mechanistic approaches to comprehensively monitor pollution hotspots. We enhanced New Delhi's existing sensor network with 28 low-cost sensors, collecting PM2.5 data over 30 months from May 1, 2018, to Nov 1, 2020. Applying established definitions of hotspots to this data, we found the existence of additional 189 hidden hotspots apart from confirming 660 hotspots detected by the public network. Using predictive techniques like Space-Time Kriging, we identified hidden hotspots with 95% precision and 88% recall with 50% sensor failure rate, and with 98% precision and 95% recall with 50% missing sensors. The projected results of our predictive models were further compiled into policy recommendations for public authorities. Additionally, we developed a Gaussian Plume Dispersion Model to understand the mechanistic underpinnings of hotspot formation, incorporating an emissions inventory derived from local sources. Our mechanistic model is able to explain 65% of observed transient hotspots. Our findings underscore the importance of integrating data-driven predictive models with physics-based mechanistic models for scalable and robust air pollution management in resource-constrained settings.


Packrat: Automatic Reconfiguration for Latency Minimization in CPU-based DNN Serving

arXiv.org Artificial Intelligence

In this paper, we investigate how to push the performance limits of serving Deep Neural Network (DNN) models on CPU-based servers. Specifically, we observe that while intra-operator parallelism across multiple threads is an effective way to reduce inference latency, it provides diminishing returns. Our primary insight is that instead of running a single instance of a model with all available threads on a server, running multiple instances each with smaller batch sizes and fewer threads for intra-op parallelism can provide lower inference latency. However, the right configuration is hard to determine manually since it is workload- (DNN model and batch size used by the serving system) and deployment-dependent (number of CPU cores on server). We present Packrat, a new serving system for online inference that given a model and batch size ($B$) algorithmically picks the optimal number of instances ($i$), the number of threads each should be allocated ($t$), and the batch sizes each should operate on ($b$) that minimizes latency. Packrat is built as an extension to TorchServe and supports online reconfigurations to avoid serving downtime. Averaged across a range of batch sizes, Packrat improves inference latency by 1.43$\times$ to 1.83$\times$ on a range of commonly used DNNs.


Generation of a Compendium of Transcription Factor Cascades and Identification of Potential Therapeutic Targets using Graph Machine Learning

arXiv.org Artificial Intelligence

Transcription factors (TFs) play a vital role in the regulation of gene expression thereby making them critical to many cellular processes. In this study, we used graph machine learning methods to create a compendium of TF cascades using data extracted from the STRING database. A TF cascade is a sequence of TFs that regulate each other, forming a directed path in the TF network. We constructed a knowledge graph of 81,488 unique TF cascades, with the longest cascade consisting of 62 TFs. Our results highlight the complex and intricate nature of TF interactions, where multiple TFs work together to regulate gene expression. We also identified 10 TFs with the highest regulatory influence based on centrality measurements, providing valuable information for researchers interested in studying specific TFs. Furthermore, our pathway enrichment analysis revealed significant enrichment of various pathways and functional categories, including those involved in cancer and other diseases, as well as those involved in development, differentiation, and cell signaling. The enriched pathways identified in this study may have potential as targets for therapeutic intervention in diseases associated with dysregulation of transcription factors. We have released the dataset, knowledge graph, and graphML methods for the TF cascades, and created a website to display the results, which can be accessed by researchers interested in using this dataset. Our study provides a valuable resource for understanding the complex network of interactions between TFs and their regulatory roles in cellular processes.