Bhadra, Sahely
News about Global North considered Truthful! The Geo-political Veracity Gradient in Global South News
Mandava, Sujit, P, Deepak, Bhadra, Sahely
While there has been much research into developing AI techniques for fake news detection aided by various benchmark datasets, it has often been pointed out that fake news in different geo-political regions traces different contours. In this work we uncover, through analytical arguments and empirical evidence, the existence of an important characteristic in news originating from the Global South viz., the geo-political veracity gradient. In particular, we show that Global South news about topics from Global North -- such as news from an Indian news agency on US elections -- tend to be less likely to be fake. Observing through the prism of the political economy of fake news creation, we posit that this pattern could be due to the relative lack of monetarily aligned incentives in producing fake news about a different region than the regional remit of the audience. We provide empirical evidence for this from benchmark datasets. We also empirically analyze the consequences of this effect in applying AI-based fake news detection models for fake news AI trained on one region within another regional context. We locate our work within emerging critical scholarship on geo-political biases within AI in general, particularly with AI usage in fake news identification; we hope our insight into the geo-political veracity gradient could help steer fake news AI scholarship towards positively impacting Global South societies.
Blacks is to Anger as Whites is to Joy? Understanding Latent Affective Bias in Large Pre-trained Neural Language Models
Kadan, Anoop, P., Deepak, Bhadra, Sahely, Gangan, Manjary P., L, Lajish V.
Groundbreaking inventions and highly significant performance improvements in deep learning based Natural Language Processing are witnessed through the development of transformer based large Pre-trained Language Models (PLMs). The wide availability of unlabeled data within human generated data deluge along with self-supervised learning strategy helps to accelerate the success of large PLMs in language generation, language understanding, etc. But at the same time, latent historical bias/unfairness in human minds towards a particular gender, race, etc., encoded unintentionally/intentionally into the corpora harms and questions the utility and efficacy of large PLMs in many real-world applications, particularly for the protected groups. In this paper, we present an extensive investigation towards understanding the existence of "Affective Bias" in large PLMs to unveil any biased association of emotions such as anger, fear, joy, etc., towards a particular gender, race or religion with respect to the downstream task of textual emotion detection. We conduct our exploration of affective bias from the very initial stage of corpus level affective bias analysis by searching for imbalanced distribution of affective words within a domain, in large scale corpora that are used to pre-train and fine-tune PLMs. Later, to quantify affective bias in model predictions, we perform an extensive set of class-based and intensity-based evaluations using various bias evaluation corpora. Our results show the existence of statistically significant affective bias in the PLM based emotion detection systems, indicating biased association of certain emotions towards a particular gender, race, and religion.
Warping Resilient Time Series Embeddings
Mathew, Anish, P, Deepak, Bhadra, Sahely
Time series are ubiquitous in real world problems and computing distance between two time series is often required in several learning tasks. Computing similarity between time series by ignoring variations in speed or warping is often encountered and dynamic time warping (DTW) is the state of the art. However DTW is not applicable in algorithms which require kernel or vectors. In this paper, we propose a mechanism named WaRTEm to generate vector embeddings of time series such that distance measures in the embedding space exhibit resilience to warping. Therefore, WaRTEm is more widely applicable than DTW. WaRTEm is based on a twin auto-encoder architecture and a training strategy involving warping operators for generating warping resilient embeddings for time series datasets. We evaluate the performance of WaRTEm and observed more than $20\%$ improvement over DTW in multiple real-world datasets.
Multi-view Kernel Completion
Bhadra, Sahely, Kaski, Samuel, Rousu, Juho
In this paper, we introduce the first method that (1) can complete kernel matrices with completely missing rows and columns as opposed to individual missing kernel values, (2) does not require any of the kernels to be complete a priori, and (3) can tackle non-linear kernels. These aspects are necessary in practical applications such as integrating legacy data sets, learning under sensor failures and learning when measurements are costly for some of the views. The proposed approach predicts missing rows by modelling both within-view and between-view relationships among kernel values. We show, both on simulated data and real world data, that the proposed method outperforms existing techniques in the restricted settings where they are available, and extends applicability to new settings.