Goto

Collaborating Authors

 Beyan, Cigdem


Socially Pertinent Robots in Gerontological Healthcare

arXiv.org Artificial Intelligence

Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necessary. While several robotic platforms have been used in gerontological healthcare, the question of whether or not a social interactive robot with multi-modal conversational capabilities will be useful and accepted in real-life facilities is yet to be answered. This paper is an attempt to partially answer this question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities. The software architecture, developed during the H2020 SPRING project, together with the experimental protocol, allowed us to evaluate the acceptability (AES) and usability (SUS) with more than 60 end-users. Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.


Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A Survey

arXiv.org Artificial Intelligence

Automated co-located human-human interaction analysis has been addressed by the use of nonverbal communication as measurable evidence of social and psychological phenomena. We survey the computing studies (since 2010) detecting phenomena related to social traits (e.g., leadership, dominance, personality traits), social roles/relations, and interaction dynamics (e.g., group cohesion, engagement, rapport). Our target is to identify the nonverbal cues and computational methodologies resulting in effective performance. This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings (free-standing conversations, meetings, dyads, and crowds). We also present a comprehensive summary of the related datasets and outline future research directions which are regarding the implementation of artificial intelligence, dataset curation, and privacy-preserving interaction analysis. Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively; multimodal features are prominently performing better; deep learning architectures showed improved performance in overall, but there exist many phenomena whose detection has never been implemented through deep models. We also identified several limitations such as the lack of scalable benchmarks, annotation reliability tests, cross-dataset experiments, and explainability analysis.


Multimodal Emotion Recognition with Modality-Pairwise Unsupervised Contrastive Loss

arXiv.org Artificial Intelligence

Emotion recognition is involved in several real-world applications. With an increase in available modalities, automatic understanding of emotions is being performed more accurately. The success in Multimodal Emotion Recognition (MER), primarily relies on the supervised learning paradigm. However, data annotation is expensive, time-consuming, and as emotion expression and perception depends on several factors (e.g., age, gender, culture) obtaining labels with a high reliability is hard. Motivated by these, we focus on unsupervised feature learning for MER. We consider discrete emotions, and as modalities text, audio and vision are used. Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature. Our end-to-end feature learning approach has several differences (and advantages) compared to existing MER methods: i) it is unsupervised, so the learning is lack of data labelling cost; ii) it does not require data spatial augmentation, modality alignment, large number of batch size or epochs; iii) it applies data fusion only at inference; and iv) it does not require backbones pre-trained on emotion recognition task. The experiments on benchmark datasets show that our method outperforms several baseline approaches and unsupervised learning methods applied in MER. Particularly, it even surpasses a few supervised MER state-of-the-art.


Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning

arXiv.org Artificial Intelligence

Despite the fact that subspace clustering has become a powerful Given a trimmed sequence, in which a single action or activity technique for problems such as face clustering or digit is assumed to be present, the final goal of HAR is to correctly recognition, its applicability to the problems like skeletonbased classifying it. Although significant progresses have been made HAR was only explored by a limited number of works in the last years, accurate action recognition in videos is still a [7], [8], [9]. This is due to many operative limitations including challenging task because of the complexity of the visual data how to handle the temporal dimensions, the inherent noise e.g., due to varying camera viewpoints, occlusions and abrupt present in the skeletal data and the related computational changes in lighting conditions.