Bethard, Steven
Identifying Task Groupings for Multi-Task Learning Using Pointwise V-Usable Information
Li, Yingya, Miller, Timothy, Bethard, Steven, Savova, Guergana
The success of multi-task learning can depend heavily on which tasks are grouped together. Naively grouping all tasks or a random set of tasks can result in negative transfer, with the multi-task models performing worse than single-task models. Though many efforts have been made to identify task groupings and to measure the relatedness among different tasks, it remains a challenging research topic to define a metric to identify the best task grouping out of a pool of many potential task combinations. We propose a metric of task relatedness based on task difficulty measured by pointwise V-usable information (PVI). PVI is a recently proposed metric to estimate how much usable information a dataset contains given a model. We hypothesize that tasks with not statistically different PVI estimates are similar enough to benefit from the joint learning process. We conduct comprehensive experiments to evaluate the feasibility of this metric for task grouping on 15 NLP datasets in the general, biomedical, and clinical domains. We compare the results of the joint learners against single learners, existing baseline methods, and recent large language models, including Llama 2 and GPT-4. The results show that by grouping tasks with similar PVI estimates, the joint learners yielded competitive results with fewer total parameters, with consistent performance across domains.
Semi-Structured Chain-of-Thought: Integrating Multiple Sources of Knowledge for Improved Language Model Reasoning
Su, Xin, Le, Tiep, Bethard, Steven, Howard, Phillip
An important open question pertaining to the use of large language models for knowledge-intensive tasks is how to effectively integrate knowledge from three sources: the model's parametric memory, external structured knowledge, and external unstructured knowledge. Most existing prompting methods either rely solely on one or two of these sources, or require repeatedly invoking large language models to generate similar or identical content. In this work, we overcome these limitations by introducing a novel semi-structured prompting approach that seamlessly integrates the model's parametric memory with unstructured knowledge from text documents and structured knowledge from knowledge graphs. Experimental results on open-domain multi-hop question answering datasets demonstrate that our prompting method significantly surpasses existing techniques, even exceeding those which require fine-tuning.
Fusing Temporal Graphs into Transformers for Time-Sensitive Question Answering
Su, Xin, Howard, Phillip, Hakim, Nagib, Bethard, Steven
Answering time-sensitive questions from long documents requires temporal reasoning over the times in questions and documents. An important open question is whether large language models can perform such reasoning solely using a provided text document, or whether they can benefit from additional temporal information extracted using other systems. We address this research question by applying existing temporal information extraction systems to construct temporal graphs of events, times, and temporal relations in questions and documents. We then investigate different approaches for fusing these graphs into Transformer models. Experimental results show that our proposed approach for fusing temporal graphs into input text substantially enhances the temporal reasoning capabilities of Transformer models with or without fine-tuning. Additionally, our proposed method outperforms various graph convolution-based approaches and establishes a new state-of-the-art performance on SituatedQA and three splits of TimeQA.
Improving Toponym Resolution with Better Candidate Generation, Transformer-based Reranking, and Two-Stage Resolution
Zhang, Zeyu, Bethard, Steven
Geocoding is the task of converting location mentions in text into structured data that encodes the geospatial semantics. We propose a new architecture for geocoding, GeoNorm. GeoNorm first uses information retrieval techniques to generate a list of candidate entries from the geospatial ontology. Then it reranks the candidate entries using a transformer-based neural network that incorporates information from the ontology such as the entry's population. This generate-and-rerank process is applied twice: first to resolve the less ambiguous countries, states, and counties, and second to resolve the remaining location mentions, using the identified countries, states, and counties as context. Our proposed toponym resolution framework achieves state-of-the-art performance on multiple datasets. Code and models are available at \url{https://github.com/clulab/geonorm}.
Explainable Verbal Reasoner Plus (EVR+): A Natural Language Reasoning Framework that Supports Diverse Compositional Reasoning
Liang, Zhengzhong, Zhang, Zeyu, Bethard, Steven, Surdeanu, Mihai
Languages models have been successfully applied to a variety of reasoning tasks in NLP, yet the language models still suffer from compositional generalization. In this paper we present Explainable Verbal Reasoner Plus (EVR+), a reasoning framework that enhances language models' compositional reasoning ability by (1) allowing the model to explicitly generate and execute symbolic operators, and (2) allowing the model to decompose a complex task into several simpler ones in a flexible manner. Compared with its predecessor Explainable Verbal Reasoner (EVR) and other previous approaches adopting similar ideas, our framework supports more diverse types of reasoning such as nested loops and different types of recursion. To evaluate our reasoning framework, we build a synthetic dataset with five tasks that require compositional reasoning. Results show that our reasoning framework can enhance the language model's compositional generalization performance on the five tasks, using a fine-tuned language model. We also discussed the possibility and the challenges to combine our reasoning framework with a few-shot prompted language model.