Besold, Tarek R.
From Latent to Lucid: Transforming Knowledge Graph Embeddings into Interpretable Structures
Wehner, Christoph, Iliopoulou, Chrysa, Besold, Tarek R.
This paper introduces a post-hoc explainable AI method tailored for Knowledge Graph Embedding models. These models are essential to Knowledge Graph Completion yet criticized for their opaque, black-box nature. Despite their significant success in capturing the semantics of knowledge graphs through high-dimensional latent representations, their inherent complexity poses substantial challenges to explainability. Unlike existing methods, our approach directly decodes the latent representations encoded by Knowledge Graph Embedding models, leveraging the principle that similar embeddings reflect similar behaviors within the Knowledge Graph. By identifying distinct structures within the subgraph neighborhoods of similarly embedded entities, our method identifies the statistical regularities on which the models rely and translates these insights into human-understandable symbolic rules and facts. This bridges the gap between the abstract representations of Knowledge Graph Embedding models and their predictive outputs, offering clear, interpretable insights. Key contributions include a novel post-hoc explainable AI method for Knowledge Graph Embedding models that provides immediate, faithful explanations without retraining, facilitating real-time application even on large-scale knowledge graphs. The method's flexibility enables the generation of rule-based, instance-based, and analogy-based explanations, meeting diverse user needs. Extensive evaluations show our approach's effectiveness in delivering faithful and well-localized explanations, enhancing the transparency and trustworthiness of Knowledge Graph Embedding models.
The Next Big Thing(s) in Unsupervised Machine Learning: Five Lessons from Infant Learning
Zaadnoordijk, Lorijn, Besold, Tarek R., Cusack, Rhodri
After a surge in popularity of supervised Deep Learning, the desire to reduce the dependence on curated, labelled data sets and to leverage the vast quantities of unlabelled data available recently triggered renewed interest in unsupervised learning algorithms. Despite a significantly improved performance due to approaches such as the identification of disentangled latent representations, contrastive learning, and clustering optimisations, the performance of unsupervised machine learning still falls short of its hypothesised potential. Machine learning has previously taken inspiration from neuroscience and cognitive science with great success. However, this has mostly been based on adult learners with access to labels and a vast amount of prior knowledge. In order to push unsupervised machine learning forward, we argue that developmental science of infant cognition might hold the key to unlocking the next generation of unsupervised learning approaches. Conceptually, human infant learning is the closest biological parallel to artificial unsupervised learning, as infants too must learn useful representations from unlabelled data. In contrast to machine learning, these new representations are learned rapidly and from relatively few examples. Moreover, infants learn robust representations that can be used flexibly and efficiently in a number of different tasks and contexts. We identify five crucial factors enabling infants' quality and speed of learning, assess the extent to which these have already been exploited in machine learning, and propose how further adoption of these factors can give rise to previously unseen performance levels in unsupervised learning.
An Ontology-based Approach to Explaining Artificial Neural Networks
Confalonieri, Roberto, del Prado, Fermín Moscoso, Agramunt, Sebastia, Malagarriga, Daniel, Faggion, Daniele, Weyde, Tillman, Besold, Tarek R.
Explainability in Artificial Intelligence has been revived as a topic of active research by the need of conveying safety and trust to users in the `how' and `why' of automated decision-making. Whilst a plethora of approaches have been developed for post-hoc explainability, only a few focus on how to use domain knowledge, and how this influences the understandability of an explanation from the users' perspective. In this paper we show how ontologies help the understandability of interpretable machine learning models, such as decision trees. In particular, we build on Trepan, an algorithm that explains artificial neural networks by means of decision trees, and we extend it to include ontologies modeling domain knowledge in the process of generating explanations. We present the results of a user study that measures the understandability of decision trees in domains where explanations are critical, namely, in finance and medicine. Our study shows that decision trees taking into account domain knowledge during generation are more understandable than those generated without the use of ontologies.
The What, the Why, and the How of Artificial Explanations in Automated Decision-Making
Besold, Tarek R., Uckelman, Sara L.
The increasing incorporation of Artificial Intelligence in the form of automated systems into decision-making procedures highlights not only the importance of decision theory for automated systems but also the need for these decision procedures to be explainable to the people involved in them. Traditional realist accounts of explanation, wherein explanation is a relation that holds (or does not hold) eternally between an explanans and an explanandum, are not adequate to account for the notion of explanation required for artificial decision procedures. We offer an alternative account of explanation as used in the context of automated decision-making that makes explanation an epistemic phenomenon, and one that is dependent on context. This account of explanation better accounts for the way that we talk about, and use, explanations and derived concepts, such as `explanatory power', and also allows us to differentiate between reasons or causes on the one hand, which do not need to have an epistemic aspect, and explanations on the other, which do have such an aspect. Against this theoretical backdrop we then review existing approaches to explanation in Artificial Intelligence and Machine Learning, and suggest desiderata which truly explainable decision systems should fulfill.
Efficient Dodgson-Score Calculation Using Heuristics and Parallel Computing
Recknagel, Arne, Besold, Tarek R.
Conflict of interest is the permanent companion of any population of agents (computational or biological). For that reason, the ability to compromise is of paramount importance, making voting a key element of societal mechanisms. One of the voting procedures most often discussed in the literature and, due to its intuitiveness, also conceptually quite appealing is Charles Dodgson's scoring rule, basically using the respective closeness to being a Condorcet winner for evaluating competing alternatives. In this paper, we offer insights on the practical limits of algorithms computing the exact Dodgson scores from a number of votes. While the problem itself is theoretically intractable, this work proposes and analyses five different solutions which try distinct approaches to practically solve the issue in an effective manner. Additionally, three of the discussed procedures can be run in parallel which has the potential of drastically reducing the problem size.
Neural-Symbolic Learning and Reasoning: Contributions and Challenges
Garcez, Artur d' (City University London) | Avila (Universitaet Onsnabrueck) | Besold, Tarek R. (KU Leuven) | Raedt, Luc de (University of St. Andrews) | Földiak, Peter (Wright State University) | Hitzler, Pascal (Stanford University) | Icard, Thomas (Universitaet Osnabrueck) | Kühnberger, Kai-Uwe (Institute of Informatics, UFRGS) | Lamb, Luis C. (University of Texas at Austin) | Miikkulainen, Risto (Acadia University) | Silver, Daniel L.
The goal of neural-symbolic computation is to integrate robust connectionist learning and sound symbolic reasoning. With the recent advances in connectionist learning, in particular deep neural networks, forms of representation learning have emerged. However, such representations have not become useful for reasoning. Results from neural-symbolic computation have shown to offer powerful alternatives for knowledge representation, learning and reasoning in neural computation. This paper recalls the main contributions and discusses key challenges for neural-symbolic integration which have been identified at a recent Dagstuhl seminar.