Goto

Collaborating Authors

 Beryozkin, Genady


A Recipe for Improving Remote Sensing VLM Zero Shot Generalization

arXiv.org Artificial Intelligence

Foundation models have had a significant impact across various AI applications, enabling use cases that were previously impossible. Contrastive Visual Language Models (VLMs), in particular, have outperformed other techniques in many tasks. However, their prevalence in remote sensing (RS) is still limited, due to the scarcity of diverse remote-sensing visual-language datasets. In this work we introduce two novel image-caption datasets for training of remote sensing foundation models. The first dataset pairs aerial and satellite imagery with captions generated by Gemini using landmarks extracted from Google Maps. The second dataset utilizes public web images and their corresponding alt-text, filtered for the remote sensing domain, resulting in a diverse dataset with greater breadth in image styles and subject matter. These datasets are used to pre-train the MaMMUT~\citep{kuo2023mammutsimplearchitecturejoint} VLM architecture, resulting in state-of-the-art generalization performance in zero-shot cross-modal retrieval on well-known public benchmarks. Finally, we present our ongoing research to distill image-level knowledge gained in the VLM contrastive training procedure to enhance the model's localization ability. Specifically, we iteratively generate pseudo-labels for image regions based on the model's attention maps and use these labels for further training. To mitigate noisy attention maps and create robust segmentation masks, we introduce a novel attention-pooling mechanism called the Smooth-Attention-Operation.


Using Text Injection to Improve Recognition of Personal Identifiers in Speech

arXiv.org Artificial Intelligence

Accurate recognition of specific categories, such as persons' names, dates or other identifiers is critical in many Automatic Speech Recognition (ASR) applications. As these categories represent personal information, ethical use of this data including collection, transcription, training and evaluation demands special care. One way of ensuring the security and privacy of individuals is to redact or eliminate Personally Identifiable Information (PII) from collection altogether. However, this results in ASR models that tend to have lower recognition accuracy of these categories. We use text-injection to improve the recognition of PII categories by including fake textual substitutes of PII categories in the training data using a text injection method. We demonstrate substantial improvement to Recall of Names and Dates in medical notes while improving overall WER. For alphanumeric digit sequences we show improvements to Character Error Rate and Sentence Accuracy.