Goto

Collaborating Authors

 Bersini, Hugues


Early evidence of how LLMs outperform traditional systems on OCR/HTR tasks for historical records

arXiv.org Artificial Intelligence

We explore the ability of two LLMs -- GPT-4o and Claude Sonnet 3.5 -- to transcribe historical handwritten documents in a tabular format and compare their performance to traditional OCR/HTR systems: EasyOCR, Keras, Pytesseract, and TrOCR. Considering the tabular form of the data, two types of experiments are executed: one where the images are split line by line and the other where the entire scan is used as input. Based on CER and BLEU, we demonstrate that LLMs outperform the conventional OCR/HTR methods. Moreover, we also compare the evaluated CER and BLEU scores to human evaluations to better judge the outputs of whole-scan experiments and understand influential factors for CER and BLEU. Combining judgments from all the evaluation metrics, we conclude that two-shot GPT-4o for line-by-line images and two-shot Claude Sonnet 3.5 for whole-scan images yield the transcriptions of the historical records most similar to the ground truth.


Bridging Human Concepts and Computer Vision for Explainable Face Verification

arXiv.org Artificial Intelligence

With Artificial Intelligence (AI) influencing the decision-making process of sensitive applications such as Face Verification, it is fundamental to ensure the transparency, fairness, and accountability of decisions. Although Explainable Artificial Intelligence (XAI) techniques exist to clarify AI decisions, it is equally important to provide interpretability of these decisions to humans. In this paper, we present an approach to combine computer and human vision to increase the explanation's interpretability of a face verification algorithm. In particular, we are inspired by the human perceptual process to understand how machines perceive face's human-semantic areas during face comparison tasks. We use Mediapipe, which provides a segmentation technique that identifies distinct human-semantic facial regions, enabling the machine's perception analysis. Additionally, we adapted two model-agnostic algorithms to provide human-interpretable insights into the decision-making processes.


Lazy Learning Meets the Recursive Least Squares Algorithm

Neural Information Processing Systems

Lazy learning is a memory-based technique that, once a query is received, extracts a prediction interpolating locally the neighboring examples of the query which are considered relevant according to a distance measure. In this paper we propose a data-driven method to select on a query-by-query basis the optimal number of neighbors to be considered for each prediction. As an efficient way to identify and validate local models, the recursive least squares algorithm is introduced in the context of local approximation and lazy learning. Furthermore, beside the winner-takes-all strategy for model selection, a local combination of the most promising models is explored. The method proposed is tested on six different datasets and compared with a state-of-the-art approach.


Lazy Learning Meets the Recursive Least Squares Algorithm

Neural Information Processing Systems

Lazy learning is a memory-based technique that, once a query is received, extractsa prediction interpolating locally the neighboring examples of the query which are considered relevant according to a distance measure. In this paper we propose a data-driven method to select on a query-by-query basis the optimal number of neighbors to be considered for each prediction. As an efficient way to identify and validate local models, the recursive least squares algorithm is introduced in the context oflocal approximation and lazy learning. Furthermore, beside the winner-takes-all strategy for model selection, a local combination of the most promising models is explored. The method proposed is tested on six different datasets and compared with a state-of-the-art approach.