Goto

Collaborating Authors

 Bernasconi, Martino


Nearly-Optimal Bandit Learning in Stackelberg Games with Side Information

arXiv.org Artificial Intelligence

We study the problem of online learning in Stackelberg games with side information between a leader and a sequence of followers. In every round the leader observes contextual information and commits to a mixed strategy, after which the follower best-responds. We provide learning algorithms for the leader which achieve $O(T^{1/2})$ regret under bandit feedback, an improvement from the previously best-known rates of $O(T^{2/3})$. Our algorithms rely on a reduction to linear contextual bandits in the utility space: In each round, a linear contextual bandit algorithm recommends a utility vector, which our algorithm inverts to determine the leader's mixed strategy. We extend our algorithms to the setting in which the leader's utility function is unknown, and also apply it to the problems of bidding in second-price auctions with side information and online Bayesian persuasion with public and private states. Finally, we observe that our algorithms empirically outperform previous results on numerical simulations.


Bandits with Replenishable Knapsacks: the Best of both Worlds

arXiv.org Artificial Intelligence

The bandits with knapsack (BwK) framework models online decision-making problems in which an agent makes a sequence of decisions subject to resource consumption constraints. The traditional model assumes that each action consumes a non-negative amount of resources and the process ends when the initial budgets are fully depleted. We study a natural generalization of the BwK framework which allows non-monotonic resource utilization, i.e., resources can be replenished by a positive amount. We propose a best-of-both-worlds primal-dual template that can handle any online learning problem with replenishment for which a suitable primal regret minimizer exists. In particular, we provide the first positive results for the case of adversarial inputs by showing that our framework guarantees a constant competitive ratio $\alpha$ when $B=\Omega(T)$ or when the possible per-round replenishment is a positive constant. Moreover, under a stochastic input model, our algorithm yields an instance-independent $\tilde{O}(T^{1/2})$ regret bound which complements existing instance-dependent bounds for the same setting. Finally, we provide applications of our framework to some economic problems of practical relevance.