Goto

Collaborating Authors

 Berger, Victor


Boltzmann Tuning of Generative Models

arXiv.org Artificial Intelligence

The paper focuses on the a posteriori tuning of a generative model in order to favor the generation of good instances in the sense of some external differentiable criterion. The proposed approach, called Boltzmann Tuning of Generative Models (BTGM), applies to a wide range of applications. It covers conditional generative modelling as a particular case, and offers an affordable alternative to rejection sampling. The contribution of the paper is twofold. Firstly, the objective is formalized and tackled as a well-posed optimization problem; a practical methodology is proposed to choose among the candidate criteria representing the same goal, the one best suited to efficiently learn a tuned generative model. Secondly, the merits of the approach are demonstrated on a real-world application, in the context of robust design for energy policies, showing the ability of BTGM to sample the extreme regions of the considered criteria.


New Losses for Generative Adversarial Learning

arXiv.org Machine Learning

Generative Adversarial Networks (Goodfellow et al., 2014), a major breakthrough in the field of generative modeling, learn a discriminator to estimate some distance between the target and the candidate distributions. This paper examines mathematical issues regarding the way the gradients for the generative model are computed in this context, and notably how to take into account how the discriminator itself depends on the generator parameters. A unifying methodology is presented to define mathematically sound training objectives for generative models taking this dependency into account in a robust way, covering both GAN, VAE and some GAN variants as particular cases.