Bergamo, Alessandro
PiCoDes: Learning a Compact Code for Novel-Category Recognition
Bergamo, Alessandro, Torresani, Lorenzo, Fitzgibbon, Andrew W.
We introduce PiCoDes: a very compact image descriptor which nevertheless allows high performance on object category recognition. In particular, we address novel-category recognition: the task of defining indexing structures and image representations which enable a large collection of images to be searched for an object category that was not known when the index was built. Instead, the training images defining the category are supplied at query time. We explicitly learn descriptors of a given length (from as small as 16 bytes per image) which have good object-recognition performance. In contrast to previous work in the domain of object recognition, we do not choose an arbitrary intermediate representation, but explicitly learn short codes. In contrast to previous approaches to learn compact codes, we optimize explicitly for (an upper bound on) classification performance. Optimization directly for binary features is difficult and nonconvex, but we present an alternation scheme and convex upper bound which demonstrate excellent performance in practice. PiCoDes of 256 bytes match the accuracy of the current best known classifier for the Caltech256 benchmark, but they decrease the database storage size by a factor of 100 and speed-up the training and testing of novel classes by orders of magnitude.
Exploiting weakly-labeled Web images to improve object classification: a domain adaptation approach
Bergamo, Alessandro, Torresani, Lorenzo
Most current image categorization methods require large collections of manually annotated training examples to learn accurate visual recognition models. The time-consuming human labeling effort effectively limits these approaches to recognition problems involving a small number of different object classes. In order to address this shortcoming, in recent years several authors have proposed to learn object classifiers from weakly-labeled Internet images, such as photos retrieved by keyword-based image search engines. While this strategy eliminates the need for human supervision, the recognition accuracies of these methods are considerably lower than those obtained with fully-supervised approaches, because of the noisy nature of the labels associated to Web data. In this paper we investigate and compare methods that learn image classifiers by combining very few manually annotated examples (e.g., 1-10 images per class) and a large number of weakly-labeled Web photos retrieved using keyword-based image search. We cast this as a domain adaptation problem: given a few strongly-labeled examples in a target domain (the manually annotated examples) and many source domain examples (the weakly-labeled Web photos), learn classifiers yielding small generalization error on the target domain. Our experiments demonstrate that, for the same number of strongly-labeled examples, our domain adaptation approach produces significant recognition rate improvements over the best published results (e.g., 65% better when using 5 labeled training examples per class) and that our classifiers are one order of magnitude faster to learn and to evaluate than the best competing method, despite our use of large weakly-labeled data sets.