Bentley, Michael
Intent Tagging: Exploring Micro-Prompting Interactions for Supporting Granular Human-GenAI Co-Creation Workflows
Gmeiner, Frederic, Marquardt, Nicolai, Bentley, Michael, Romat, Hugo, Pahud, Michel, Brown, David, Roseway, Asta, Martelaro, Nikolas, Holstein, Kenneth, Hinckley, Ken, Riche, Nathalie
Despite Generative AI (GenAI) systems' potential for enhancing content creation, users often struggle to effectively integrate GenAI into their creative workflows. Core challenges include misalignment of AI-generated content with user intentions (intent elicitation and alignment), user uncertainty around how to best communicate their intents to the AI system (prompt formulation), and insufficient flexibility of AI systems to support diverse creative workflows (workflow flexibility). Motivated by these challenges, we created IntentTagger: a system for slide creation based on the notion of Intent Tags - small, atomic conceptual units that encapsulate user intent - for exploring granular and non-linear micro-prompting interactions for Human-GenAI co-creation workflows. Our user study with 12 participants provides insights into the value of flexibly expressing intent across varying levels of ambiguity, meta-intent elicitation, and the benefits and challenges of intent tag-driven workflows. We conclude by discussing the broader implications of our findings and design considerations for GenAI-supported content creation workflows.
Safer Motion Planning of Steerable Needles via a Shaft-to-Tissue Force Model
Bentley, Michael, Rucker, Caleb, Reddy, Chakravarthy, Salzman, Oren, Kuntz, Alan
Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive anatomical structures, steerable needles have the potential to reduce the invasiveness of many medical procedures. However, inserting these needles with curved trajectories increases the risk of tissue damage due to perpendicular forces exerted on the surrounding tissue by the needle's shaft, potentially resulting in lateral shearing through tissue. Such forces can cause significant damage to surrounding tissue, negatively affecting patient outcomes. In this work, we derive a tissue and needle force model based on a Cosserat string formulation, which describes the normal forces and frictional forces along the shaft as a function of the planned needle path, friction model and parameters, and tip piercing force. We propose this new force model and associated cost function as a safer and more clinically relevant metric than those currently used in motion planning for steerable needles. We fit and validate our model through physical needle robot experiments in a gel phantom. We use this force model to define a bottleneck cost function for motion planning and evaluate it against the commonly used path-length cost function in hundreds of randomly generated 3-D environments. Plans generated with our force-based cost show a 62% reduction in the peak modeled tissue force with only a 0.07% increase in length on average compared to using the path-length cost in planning. Additionally, we demonstrate the ability to plan motions with our force-based cost function in a lung tumor biopsy scenario from a segmented computed tomography (CT) scan. By planning motions for the needle that aim to minimize the modeled needle-to-tissue force explicitly, our method plans needle paths that may reduce the risk of significant tissue damage while still reaching desired targets in the body.
Interactive-Rate Supervisory Control for Arbitrarily-Routed Multi-Tendon Robots via Motion Planning
Bentley, Michael, Rucker, Caleb, Kuntz, Alan
Tendon-driven robots, where one or more tendons under tension bend and manipulate a flexible backbone, can improve minimally invasive surgeries involving difficult-to-reach regions in the human body. Planning motions safely within constrained anatomical environments requires accuracy and efficiency in shape estimation and collision checking. Tendon robots that employ arbitrarily-routed tendons can achieve complex and interesting shapes, enabling them to travel to difficult-to-reach anatomical regions. Arbitrarily-routed tendon-driven robots have unintuitive nonlinear kinematics. Therefore, we envision clinicians leveraging an assistive interactive-rate motion planner to automatically generate collision-free trajectories to clinician-specified destinations during minimally-invasive surgical procedures. Standard motion-planning techniques cannot achieve interactive-rate motion planning with the current expensive tendon robot kinematic models. In this work, we present a 3-phase motion-planning system for arbitrarily-routed tendon-driven robots with a Precompute phase, a Load phase, and a Supervisory Control phase. Our system achieves an interactive rate by developing a fast kinematic model (over 1,000 times faster than current models), a fast voxel collision method (27.6 times faster than standard methods), and leveraging a precomputed roadmap of the entire robot workspace with pre-voxelized vertices and edges. In simulated experiments, we show that our motion-planning method achieves high tip-position accuracy and generates plans at 14.8 Hz on average in a segmented collapsed lung pleural space anatomical environment. Our results show that our method is 17,700 times faster than popular off-the-shelf motion planning algorithms with standard FK and collision detection approaches. Our open-source code is available online.