Bennamoun, Mohammed
AquaticCLIP: A Vision-Language Foundation Model for Underwater Scene Analysis
Alawode, Basit, Ganapathi, Iyyakutti Iyappan, Javed, Sajid, Werghi, Naoufel, Bennamoun, Mohammed, Mahmood, Arif
The preservation of aquatic biodiversity is critical in mitigating the effects of climate change. Aquatic scene understanding plays a pivotal role in aiding marine scientists in their decision-making processes. In this paper, we introduce AquaticCLIP, a novel contrastive language-image pre-training model tailored for aquatic scene understanding. AquaticCLIP presents a new unsupervised learning framework that aligns images and texts in aquatic environments, enabling tasks such as segmentation, classification, detection, and object counting. By leveraging our large-scale underwater image-text paired dataset without the need for ground-truth annotations, our model enriches existing vision-language models in the aquatic domain. For this purpose, we construct a 2 million underwater image-text paired dataset using heterogeneous resources, including YouTube, Netflix, NatGeo, etc. To fine-tune AquaticCLIP, we propose a prompt-guided vision encoder that progressively aggregates patch features via learnable prompts, while a vision-guided mechanism enhances the language encoder by incorporating visual context. The model is optimized through a contrastive pretraining loss to align visual and textual modalities. AquaticCLIP achieves notable performance improvements in zero-shot settings across multiple underwater computer vision tasks, outperforming existing methods in both robustness and interpretability. Our model sets a new benchmark for vision-language applications in underwater environments. The code and dataset for AquaticCLIP are publicly available on GitHub at xxx.
BENet: A Cross-domain Robust Network for Detecting Face Forgeries via Bias Expansion and Latent-space Attention
Liu, Weihua, Qiu, Jianhua, Boumaraf, Said, lin, Chaochao, liyuan, Pan, Li, Lin, Bennamoun, Mohammed, Werghi, Naoufel
In response to the growing threat of deepfake technology, we introduce BENet, a Cross-Domain Robust Bias Expansion Network. BENet enhances the detection of fake faces by addressing limitations in current detectors related to variations across different types of fake face generation techniques, where ``cross-domain" refers to the diverse range of these deepfakes, each considered a separate domain. BENet's core feature is a bias expansion module based on autoencoders. This module maintains genuine facial features while enhancing differences in fake reconstructions, creating a reliable bias for detecting fake faces across various deepfake domains. We also introduce a Latent-Space Attention (LSA) module to capture inconsistencies related to fake faces at different scales, ensuring robust defense against advanced deepfake techniques. The enriched LSA feature maps are multiplied with the expanded bias to create a versatile feature space optimized for subtle forgeries detection. To improve its ability to detect fake faces from unknown sources, BENet integrates a cross-domain detector module that enhances recognition accuracy by verifying the facial domain during inference. We train our network end-to-end with a novel bias expansion loss, adopted for the first time, in face forgery detection. Extensive experiments covering both intra and cross-dataset demonstrate BENet's superiority over current state-of-the-art solutions.
Implicit to Explicit Entropy Regularization: Benchmarking ViT Fine-tuning under Noisy Labels
Marrium, Maria, Mahmood, Arif, Bennamoun, Mohammed
Automatic annotation of large-scale datasets can introduce noisy training data labels, which adversely affect the learning process of deep neural networks (DNNs). Consequently, Noisy Labels Learning (NLL) has become a critical research field for Convolutional Neural Networks (CNNs), though it remains less explored for Vision Transformers (ViTs). In this study, we evaluate the vulnerability of ViT fine-tuning to noisy labels and compare its robustness with CNNs. We also investigate whether NLL methods developed for CNNs are equally effective for ViTs. Using linear probing and MLP-K fine-tuning, we benchmark two ViT backbones (ViT-B/16 and ViT-L/16) using three commonly used classification losses: Cross Entropy (CE), Focal Loss (FL), and Mean Absolute Error (MAE), alongside six robust NLL methods: GCE, SCE, NLNL, APL, NCE+AGCE, and ANL-CE. The evaluation is conducted across six datasets including MNIST, CIFAR-10/100, WebVision, Clothing1M, and Food-101N. Furthermore, we explore whether implicit prediction entropy minimization contributes to ViT robustness against noisy labels, noting a general trend of prediction entropy reduction across most NLL methods. Building on this observation, we examine whether explicit entropy minimization could enhance ViT resilience to noisy labels. Our findings indicate that incorporating entropy regularization enhances the performance of established loss functions such as CE and FL, as well as the robustness of the six studied NLL methods across both ViT backbones.
CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment
Javed, Sajid, Mahmood, Arif, Ganapathi, Iyyakutti Iyappan, Dharejo, Fayaz Ali, Werghi, Naoufel, Bennamoun, Mohammed
This paper proposes Comprehensive Pathology Language Image Pre-training (CPLIP), a new unsupervised technique designed to enhance the alignment of images and text in histopathology for tasks such as classification and segmentation. This methodology enriches vision-language models by leveraging extensive data without needing ground truth annotations. CPLIP involves constructing a pathology-specific dictionary, generating textual descriptions for images using language models, and retrieving relevant images for each text snippet via a pre-trained model. The model is then fine-tuned using a many-to-many contrastive learning method to align complex interrelated concepts across both modalities. Evaluated across multiple histopathology tasks, CPLIP shows notable improvements in zero-shot learning scenarios, outperforming existing methods in both interpretability and robustness and setting a higher benchmark for the application of vision-language models in the field. To encourage further research and replication, the code for CPLIP is available on GitHub at https://cplip.github.io/
Multitask Deep Learning for Accurate Risk Stratification and Prediction of Next Steps for Coronary CT Angiography Patients
Lu, Juan, Bennamoun, Mohammed, Stewart, Jonathon, Eshraghian, JasonK., Liu, Yanbin, Chow, Benjamin, Sanfilippo, Frank M., Dwivedi, Girish
Diagnostic investigation has an important role in risk stratification and clinical decision making of patients with suspected and documented Coronary Artery Disease (CAD). However, the majority of existing tools are primarily focused on the selection of gatekeeper tests, whereas only a handful of systems contain information regarding the downstream testing or treatment. We propose a multi-task deep learning model to support risk stratification and down-stream test selection for patients undergoing Coronary Computed Tomography Angiography (CCTA). The analysis included 14,021 patients who underwent CCTA between 2006 and 2017. Our novel multitask deep learning framework extends the state-of-the art Perceiver model to deal with real-world CCTA report data. Our model achieved an Area Under the receiver operating characteristic Curve (AUC) of 0.76 in CAD risk stratification, and 0.72 AUC in predicting downstream tests. Our proposed deep learning model can accurately estimate the likelihood of CAD and provide recommended downstream tests based on prior CCTA data. In clinical practice, the utilization of such an approach could bring a paradigm shift in risk stratification and downstream management. Despite significant progress using deep learning models for tabular data, they do not outperform gradient boosting decision trees, and further research is required in this area. However, neural networks appear to benefit more readily from multi-task learning than tree-based models. This could offset the shortcomings of using single task learning approach when working with tabular data.
Training Spiking Neural Networks Using Lessons From Deep Learning
Eshraghian, Jason K., Ward, Max, Neftci, Emre, Wang, Xinxin, Lenz, Gregor, Dwivedi, Girish, Bennamoun, Mohammed, Jeong, Doo Seok, Lu, Wei D.
The brain is the perfect place to look for inspiration to develop more efficient neural networks. The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like. This paper serves as a tutorial and perspective showing how to apply the lessons learnt from several decades of research in deep learning, gradient descent, backpropagation and neuroscience to biologically plausible spiking neural neural networks. We also explore the delicate interplay between encoding data as spikes and the learning process; the challenges and solutions of applying gradient-based learning to spiking neural networks (SNNs); the subtle link between temporal backpropagation and spike timing dependent plasticity, and how deep learning might move towards biologically plausible online learning. Some ideas are well accepted and commonly used amongst the neuromorphic engineering community, while others are presented or justified for the first time here. The fields of deep learning and spiking neural networks evolve very rapidly. We endeavour to treat this document as a 'dynamic' manuscript that will continue to be updated as the common practices in training SNNs also change. A series of companion interactive tutorials complementary to this paper using our Python package, snnTorch, are also made available. See https://snntorch.readthedocs.io/en/latest/tutorials/index.html .
Spectrum-guided Multi-granularity Referring Video Object Segmentation
Miao, Bo, Bennamoun, Mohammed, Gao, Yongsheng, Mian, Ajmal
Current referring video object segmentation (R-VOS) techniques extract conditional kernels from encoded (low-resolution) vision-language features to segment the decoded high-resolution features. We discovered that this causes significant feature drift, which the segmentation kernels struggle to perceive during the forward computation. This negatively affects the ability of segmentation kernels. To address the drift problem, we propose a Spectrum-guided Multi-granularity (SgMg) approach, which performs direct segmentation on the encoded features and employs visual details to further optimize the masks. In addition, we propose Spectrum-guided Cross-modal Fusion (SCF) to perform intra-frame global interactions in the spectral domain for effective multimodal representation. Finally, we extend SgMg to perform multi-object R-VOS, a new paradigm that enables simultaneous segmentation of multiple referred objects in a video. This not only makes R-VOS faster, but also more practical. Extensive experiments show that SgMg achieves state-of-the-art performance on four video benchmark datasets, outperforming the nearest competitor by 2.8% points on Ref-YouTube-VOS. Our extended SgMg enables multi-object R-VOS, runs about 3 times faster while maintaining satisfactory performance. Code is available at https://github.com/bo-miao/SgMg.
Analysis and Evaluation of Explainable Artificial Intelligence on Suicide Risk Assessment
Tang, Hao, Rekavandi, Aref Miri, Rooprai, Dharjinder, Dwivedi, Girish, Sanfilippo, Frank, Boussaid, Farid, Bennamoun, Mohammed
This study investigates the effectiveness of Explainable Artificial Intelligence (XAI) techniques in predicting suicide risks and identifying the dominant causes for such behaviours. Data augmentation techniques and ML models are utilized to predict the associated risk. Furthermore, SHapley Additive exPlanations (SHAP) and correlation analysis are used to rank the importance of variables in predictions. Experimental results indicate that Decision Tree (DT), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) models achieve the best results while DT has the best performance with an accuracy of 95.23% and an Area Under Curve (AUC) of 0.95. As per SHAP results, anger problems, depression, and social isolation are the leading variables in predicting the risk of suicide, and patients with good incomes, respected occupations, and university education have the least risk. Results demonstrate the effectiveness of machine learning and XAI framework for suicide risk prediction, and they can assist psychiatrists in understanding complex human behaviours and can also assist in reliable clinical decision-making.
Utilising physics-guided deep learning to overcome data scarcity
Bai, Jinshuai, Alzubaidi, Laith, Wang, Qingxia, Kuhl, Ellen, Bennamoun, Mohammed, Gu, Yuantong
Deep learning (DL) relies heavily on data, and the quality of data influences its performance significantly. However, obtaining high-quality, well-annotated datasets can be challenging or even impossible in many real-world applications, such as structural risk estimation and medical diagnosis. This presents a significant barrier to the practical implementation of DL in these fields. Physics-guided deep learning (PGDL) is a novel type of DL that can integrate physics laws to train neural networks. This can be applied to any systems that are controlled or governed by physics laws, such as mechanics, finance and medical applications. It has been demonstrated that, with the additional information provided by physics laws, PGDL achieves great accuracy and generalisation in the presence of data scarcity. This review provides a detailed examination of PGDL and offers a structured overview of its use in addressing data scarcity across various fields, including physics, engineering and medical applications. Moreover, the review identifies the current limitations and opportunities for PGDL in relation to data scarcity and offers a thorough discussion on the future prospects of PGDL.
Jacobian Norm with Selective Input Gradient Regularization for Improved and Interpretable Adversarial Defense
Liu, Deyin, Wu, Lin, Zhao, Haifeng, Boussaid, Farid, Bennamoun, Mohammed, Xie, Xianghua
Deep neural networks (DNNs) are known to be vulnerable to adversarial examples that are crafted with imperceptible perturbations, i.e., a small change in an input image can induce a mis-classification, and thus threatens the reliability of deep learning based deployment systems. Adversarial training (AT) is often adopted to improve robustness through training a mixture of corrupted and clean data. However, most of AT based methods are ineffective in dealing with transferred adversarial examples which are generated to fool a wide spectrum of defense models, and thus cannot satisfy the generalization requirement raised in real-world scenarios. Moreover, adversarially training a defense model in general cannot produce interpretable predictions towards the inputs with perturbations, whilst a highly interpretable robust model is required by different domain experts to understand the behaviour of a DNN. In this work, we propose a novel approach based on Jacobian norm and Selective Input Gradient Regularization (J-SIGR), which suggests the linearized robustness through Jacobian normalization and also regularizes the perturbation-based saliency maps to imitate the model's interpretable predictions. As such, we achieve both the improved defense and high interpretability of DNNs. Finally, we evaluate our method across different architectures against powerful adversarial attacks. Experiments demonstrate that the proposed J-SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.