Beniwal, Anurag
DARD: A Multi-Agent Approach for Task-Oriented Dialog Systems
Gupta, Aman, Ravichandran, Anirudh, Zhang, Ziji, Shah, Swair, Beniwal, Anurag, Sadagopan, Narayanan
Task-oriented dialogue systems are essential for applications ranging from customer service to personal assistants and are widely used across various industries. However, developing effective multi-domain systems remains a significant challenge due to the complexity of handling diverse user intents, entity types, and domain-specific knowledge across several domains. In this work, we propose DARD (Domain Assigned Response Delegation), a multi-agent conversational system capable of successfully handling multi-domain dialogs. DARD leverages domain-specific agents, orchestrated by a central dialog manager agent. Our extensive experiments compare and utilize various agent modeling approaches, combining the strengths of smaller fine-tuned models (Flan-T5-large & Mistral-7B) with their larger counterparts, Large Language Models (LLMs) (Claude Sonnet 3.0). We provide insights into the strengths and limitations of each approach, highlighting the benefits of our multi-agent framework in terms of flexibility and composability. We evaluate DARD using the well-established MultiWOZ benchmark, achieving state-of-the-art performance by improving the dialogue inform rate by 6.6% and the success rate by 4.1% over the best-performing existing approaches. Additionally, we discuss various annotator discrepancies and issues within the MultiWOZ dataset and its evaluation system.
RecXplainer: Amortized Attribute-based Personalized Explanations for Recommender Systems
Verma, Sahil, Shah, Chirag, Dickerson, John P., Beniwal, Anurag, Sadagopan, Narayanan, Seshadri, Arjun
Recommender systems influence many of our interactions in the digital world -- impacting how we shop for clothes, sorting what we see when browsing YouTube or TikTok, and determining which restaurants and hotels we are shown when using hospitality platforms. Modern recommender systems are large, opaque models trained on a mixture of proprietary and open-source datasets. Naturally, issues of trust arise on both the developer and user side: is the system working correctly, and why did a user receive (or not receive) a particular recommendation? Providing an explanation alongside a recommendation alleviates some of these concerns. The status quo for auxiliary recommender system feedback is either user-specific explanations (e.g., "users who bought item B also bought item A") or item-specific explanations (e.g., "we are recommending item A because you watched/bought item B"). However, users bring personalized context into their search experience, valuing an item as a function of that item's attributes and their own personal preferences. In this work, we propose RecXplainer, a novel method for generating fine-grained explanations based on a user's preferences over the attributes of recommended items. We evaluate RecXplainer on five real-world and large-scale recommendation datasets using five different kinds of recommender systems to demonstrate the efficacy of RecXplainer in capturing users' preferences over item attributes and using them to explain recommendations. We also compare RecXplainer to five baselines and show RecXplainer's exceptional performance on ten metrics.