Goto

Collaborating Authors

 Benitez, J. Antonio Lara


Neural equilibria for long-term prediction of nonlinear conservation laws

arXiv.org Artificial Intelligence

We introduce Neural Discrete Equilibrium (NeurDE), a machine learning (ML) approach for long-term forecasting of flow phenomena that relies on a "lifting" of physical conservation laws into the framework of kinetic theory. The kinetic formulation provides an excellent structure for ML algorithms by separating nonlinear, non-local physics into a nonlinear but local relaxation to equilibrium and a linear non-local transport. This separation allows the ML to focus on the local nonlinear components while addressing the simpler linear transport with efficient classical numerical algorithms. To accomplish this, we design an operator network that maps macroscopic observables to equilibrium states in a manner that maximizes entropy, yielding expressive BGK-type collisions. By incorporating our surrogate equilibrium into the lattice Boltzmann (LB) algorithm, we achieve accurate flow forecasts for a wide range of challenging flows. We show that NeurDE enables accurate prediction of compressible flows, including supersonic flows, while tracking shocks over hundreds of time steps, using a small velocity lattice-a heretofore unattainable feat without expensive numerical root finding.


Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation

arXiv.org Artificial Intelligence

Despite their remarkable success in approximating a wide range of operators defined by PDEs, existing neural operators (NOs) do not necessarily perform well for all physics problems. We focus here on high-frequency waves to highlight possible shortcomings. To resolve these, we propose a subfamily of NOs enabling an enhanced empirical approximation of the nonlinear operator mapping wave speed to solution, or boundary values for the Helmholtz equation on a bounded domain. The latter operator is commonly referred to as the ''forward'' operator in the study of inverse problems. Our methodology draws inspiration from transformers and techniques such as stochastic depth. Our experiments reveal certain surprises in the generalization and the relevance of introducing stochastic depth. Our NOs show superior performance as compared with standard NOs, not only for testing within the training distribution but also for out-of-distribution scenarios. To delve into this observation, we offer an in-depth analysis of the Rademacher complexity associated with our modified models and prove an upper bound tied to their stochastic depth that existing NOs do not satisfy. Furthermore, we obtain a novel out-of-distribution risk bound tailored to Gaussian measures on Banach spaces, again relating stochastic depth with the bound. We conclude by proposing a hypernetwork version of the subfamily of NOs as a surrogate model for the mentioned forward operator.