Goto

Collaborating Authors

 Bengio, Samy


Continuous Pseudo-Labeling from the Start

arXiv.org Artificial Intelligence

Self-training (ST), or pseudo-labeling has sparked significant interest in the automatic speech recognition (ASR) community recently because of its success in harnessing unlabeled data. Unlike prior semi-supervised learning approaches that relied on iteratively regenerating pseudo-labels (PLs) from a trained model and using them to train a new model, recent state-of-the-art methods perform `continuous training' where PLs are generated using a very recent version of the model being trained. Nevertheless, these approaches still rely on bootstrapping the ST using an initial supervised learning phase where the model is trained on labeled data alone. We believe this has the potential for over-fitting to the labeled dataset in low resource settings and that ST from the start of training should reduce over-fitting. In this paper we show how we can do this by dynamically controlling the evolution of PLs during the training process in ASR. To the best of our knowledge, this is the first study that shows the feasibility of generating PLs from the very start of the training. We are able to achieve this using two techniques that avoid instabilities which lead to degenerate models that do not generalize. Firstly, we control the evolution of PLs through a curriculum that uses the online changes in PLs to control the membership of the cache of PLs and improve generalization. Secondly, we find that by sampling transcriptions from the predictive distribution, rather than only using the best transcription, we can stabilize training further. With these techniques, our ST models match prior works without an external language model.


Continuous Soft Pseudo-Labeling in ASR

arXiv.org Artificial Intelligence

Continuous pseudo-labeling (PL) algorithms such as slimIPL have recently emerged as a powerful strategy for semi-supervised learning in speech recognition. In contrast with earlier strategies that alternated between training a model and generating pseudo-labels (PLs) with it, here PLs are generated in end-to-end manner as training proceeds, improving training speed and the accuracy of the final model. PL shares a common theme with teacher-student models such as distillation in that a teacher model generates targets that need to be mimicked by the student model being trained. However, interestingly, PL strategies in general use hard-labels, whereas distillation uses the distribution over labels as the target to mimic. Inspired by distillation we expect that specifying the whole distribution (aka soft-labels) over sequences as the target for unlabeled data, instead of a single best pass pseudo-labeled transcript (hard-labels) should improve PL performance and convergence. Surprisingly and unexpectedly, we find that soft-labels targets can lead to training divergence, with the model collapsing to a degenerate token distribution per frame. We hypothesize that the reason this does not happen with hard-labels is that training loss on hard-labels imposes sequence-level consistency that keeps the model from collapsing to the degenerate solution. In this paper, we show several experiments that support this hypothesis, and experiment with several regularization approaches that can ameliorate the degenerate collapse when using soft-labels. These approaches can bring the accuracy of soft-labels closer to that of hard-labels, and while they are unable to outperform them yet, they serve as a useful framework for further improvements.


Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization

arXiv.org Artificial Intelligence

The successes of deep learning critically rely on the ability of neural networks to output meaningful predictions on unseen data -- generalization. Yet despite its criticality, there remain fundamental open questions on how neural networks generalize. How much do neural networks rely on memorization -- seeing highly similar training examples -- and how much are they capable of human-intelligence styled reasoning -- identifying abstract rules underlying the data? In this paper we introduce a novel benchmark, Pointer Value Retrieval (PVR) tasks, that explore the limits of neural network generalization. While PVR tasks can consist of visual as well as symbolic inputs, each with varying levels of difficulty, they all have a simple underlying rule. One part of the PVR task input acts as a pointer, giving the location of a different part of the input, which forms the value (and output). We demonstrate that this task structure provides a rich testbed for understanding generalization, with our empirical study showing large variations in neural network performance based on dataset size, task complexity and model architecture. The interaction of position, values and the pointer rule also allow the development of nuanced tests of generalization, by introducing distribution shift and increasing functional complexity. These reveal both subtle failures and surprising successes, suggesting many promising directions of exploration on this benchmark.


Learnable Fourier Features for Multi-DimensionalSpatial Positional Encoding

arXiv.org Artificial Intelligence

Attentional mechanisms are order-invariant. Positional encoding is a crucial component to allow attention-based deep model architectures such as Transformer to address sequences or images where the position of information matters. In this paper, we propose a novel positional encoding method based on learnable Fourier features. Instead of hard-coding each position as a token or a vector, we represent each position, which can be multi-dimensional, as a trainable encoding based on learnable Fourier feature mapping, modulated with a multi-layer perceptron. The representation is particularly advantageous for a spatial multi-dimensional position, e.g., pixel positions on an image, where $L_2$ distances or more complex positional relationships need to be captured. Our experiments based on several public benchmark tasks show that our learnable Fourier feature representation for multi-dimensional positional encoding outperforms existing methods by both improving the accuracy and allowing faster convergence.


NeurIPS 2020 Competition: Predicting Generalization in Deep Learning

arXiv.org Machine Learning

Understanding generalization in deep learning is arguably one of the most important questions in deep learning. Deep learning has been successfully adopted to a large number of problems ranging from pattern recognition to complex decision making, but many recent researchers have raised many concerns about deep learning, among which the most important is generalization. Despite numerous attempts, conventional statistical learning approaches have yet been able to provide a satisfactory explanation on why deep learning works. A recent line of works aims to address the problem by trying to predict the generalization performance through complexity measures. In this competition, we invite the community to propose complexity measures that can accurately predict generalization of models. A robust and general complexity measure would potentially lead to a better understanding of deep learning's underlying mechanism and behavior of deep models on unseen data, or shed light on better generalization bounds. All these outcomes will be important for making deep learning more robust and reliable.


Characterising Bias in Compressed Models

arXiv.org Artificial Intelligence

Pruning and quantization are widely applied techniques for compressing deep neural networks, often driven by the resource constraints of deploying models to mobile phones or embedded devices (Esteva et al., 2017; Lane & Warden, 2018). To-date, discussion around the relative merits of different compression methods has centered on the tradeoff between level of compression and top-line metrics such as top-1 and top-5 accuracy (Blalock et al., 2020). Along this dimension, compression techniques are remarkably successful. It is possible to prune the majority of weights (Gale et al., 2019; Evci et al., 2019) or heavily quantize the bit representation (Jacob et al., 2017) with negligible decreases to test-set accuracy. However, recent work by Hooker et al. (2019a) has found that the minimal changes to top-line metrics obscure critical differences in generalization between pruned and non-pruned networks. The authors establish that pruning disproportionately impacts predictive performance on a small subset of the dataset. We build upon this work and focus on the implications of these findings for a dataset with sensitive protected attributes such as gender and age. Our work addresses the question: Does compression amplify existing algorithmic bias?


Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML

arXiv.org Machine Learning

An important research direction in machine learning has centered around developing meta-learning algorithms to tackle few-shot learning. An especially successful algorithm has been Model Agnostic Meta-Learning (MAML), a method that consists of two optimization loops, with the outer loop finding a meta-initialization, from which the inner loop can efficiently learn new tasks. Despite MAML's popularity, a fundamental open question remains -- is the effectiveness of MAML due to the meta-initialization being primed for rapid learning (large, efficient changes in the representations) or due to feature reuse, with the meta initialization already containing high quality features? We investigate this question, via ablation studies and analysis of the latent representations, finding that feature reuse is the dominant factor. This leads to the ANIL (Almost No Inner Loop) algorithm, a simplification of MAML where we remove the inner loop for all but the (task-specific) head of a MAML-trained network. ANIL matches MAML's performance on benchmark few-shot image classification and RL and offers computational improvements over MAML. We further study the precise contributions of the head and body of the network, showing that performance on the test tasks is entirely determined by the quality of the learned features, and we can remove even the head of the network (the NIL algorithm). We conclude with a discussion of the rapid learning vs feature reuse question for meta-learning algorithms more broadly.


Efficient Exploration with Self-Imitation Learning via Trajectory-Conditioned Policy

arXiv.org Artificial Intelligence

This paper proposes a method for learning a trajectory-conditioned policy to imitate diverse demonstrations from the agent's own past experiences. We demonstrate that such self-imitation drives exploration in diverse directions and increases the chance of finding a globally optimal solution in reinforcement learning problems, especially when the reward is sparse and deceptive. Our method significantly outperforms existing self-imitation learning and count-based exploration methods on various sparse-reward reinforcement learning tasks with local optima. In particular, we report a state-of-the-art score of more than 25,000 points on Montezuma's Revenge without using expert demonstrations or resetting to arbitrary states.


A Closed-Form Learned Pooling for Deep Classification Networks

arXiv.org Machine Learning

In modern computer vision tasks, convolutional neural networks (CNNs) are indispensable for image classification tasks due to their efficiency and effectiveness. Part of their superiority compared to other architectures, comes from the fact that a single, local filter is shared across the entire image. However, there are scenarios where we may need to treat spatial locations in non-uniform manner. We see this in nature when considering how humans have evolved foveation to process different areas in their field of vision with varying levels of detail. In this paper we propose a way to enable CNNs to learn different pooling weights for each pixel location. We do so by introducing an extended definition of a pooling operator. This operator can learn a strict super-set of what can be learned by average pooling or convolutions. It has the benefit of being shared across feature maps and can be encouraged to be local or diffuse depending on the data. We show that for fixed network weights, our pooling operator can be computed in closed-form by spectral decomposition of matrices associated with class separability. Through experiments, we show that this operator benefits generalization for ResNets and CNNs on the CIFAR-10, CIFAR-100 and SVHN datasets and improves robustness to geometric corruptions and perturbations on the CIFAR-10-C and CIFAR-10-P test sets.


Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

arXiv.org Machine Learning

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16].