Bender, Axel
Pervasive Flexibility in Living Technologies through Degeneracy Based Design
Whitacre, James, Bender, Axel
The capacity to adapt can greatly influence the success of systems that need to compensate for damaged parts, learn how to achieve robust performance in new environments, or exploit novel opportunities that originate from new technological interfaces or emerging markets. Many of the conditions in which technology is required to adapt cannot be anticipated during its design stage, creating a significant challenge for the designer. Inspired by the study of a range of biological systems, we propose that degeneracy - the realization of multiple, functionally versatile components with contextually overlapping functional redundancy - will support adaptation in technologies because it effects pervasive flexibility, evolutionary innovation, and homeostatic robustness. We provide examples of degeneracy in a number of rudimentary living technologies from military socio-technical systems to swarm robotics and we present design principles - including protocols, loose regulatory coupling, and functional versatility - that allow degeneracy to arise in both biological and man-made systems.
Evolutionary Mechanics: new engineering principles for the emergence of flexibility in a dynamic and uncertain world
Whitacre, James M, Rohlfshagen, Philipp, Bender, Axel, Yao, Xin
Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines/traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy - the existence of multi-functional components with partially overlapping functions - is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this paper reports evidence that degeneracy improves robustness and adaptability of a simulated fleet without incurring costs to efficiency. We find degeneracy dramatically increases robustness of a fleet to unpredicted changes in the environment while it also facilitates robustness to anticipated variations. When we allow a fleet's architecture to be adapted in response to environmental change, we find degeneracy can be selectively acquired, leading to faster rates of design adaptation and ultimately to better designs. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy design principles fundamentally alter the propensity for adaptation and may be useful within several engineering and planning contexts.
Strategic Positioning in Tactical Scenario Planning
Whitacre, James M., Abbass, Hussein A., Sarker, Ruhul, Bender, Axel, Baker, Stephen
Capability planning problems are pervasive throughout many areas of human interest with prominent examples found in defense and security. Planning provides a unique context for optimization that has not been explored in great detail and involves a number of interesting challenges which are distinct from traditional optimization research. Planning problems demand solutions that can satisfy a number of competing objectives on multiple scales related to robustness, adaptiveness, risk, etc. The scenario method is a key approach for planning. Scenarios can be defined for long-term as well as short-term plans. This paper introduces computational scenario-based planning problems and proposes ways to accommodate strategic positioning within the tactical planning domain. We demonstrate the methodology in a resource planning problem that is solved with a multi-objective evolutionary algorithm. Our discussion and results highlight the fact that scenario-based planning is naturally framed within a multi-objective setting. However, the conflicting objectives occur on different system levels rather than within a single system alone. This paper also contends that planning problems are of vital interest in many human endeavors and that Evolutionary Computation may be well positioned for this problem domain.
Computational Scenario-based Capability Planning
Abbass, Hussein, Bender, Axel, Dam, Helen, Baker, Stephen, Whitacre, James M, Sarker, Ruhul
Scenarios are pen-pictures of plausible futures, used for strategic planning. The aim of this investigation is to expand the horizon of scenario-based planning through computational models that are able to aid the analyst in the planning process. The investigation builds upon the advances of Information and Communication Technology (ICT) to create a novel, flexible and customizable computational capability-based planning methodology that is practical and theoretically sound. We will show how evolutionary computation, in particular evolutionary multi-objective optimization, can play a central role - both as an optimizer and as a source for innovation.
Degenerate neutrality creates evolvable fitness landscapes
Whitacre, James M, Bender, Axel
Understanding how systems can be designed to be evolvable is fundamental to research in optimization, evolution, and complex systems science. Many researchers have thus recognized the importance of evolvability, i.e. the ability to find new variants of higher fitness, in the fields of biological evolution and evolutionary computation. Recent studies by Ciliberti et al (Proc. Nat. Acad. Sci., 2007) and Wagner (Proc. R. Soc. B., 2008) propose a potentially important link between the robustness and the evolvability of a system. In particular, it has been suggested that robustness may actually lead to the emergence of evolvability. Here we study two design principles, redundancy and degeneracy, for achieving robustness and we show that they have a dramatically different impact on the evolvability of the system. In particular, purely redundant systems are found to have very little evolvability while systems with degeneracy, i.e. distributed robustness, can be orders of magnitude more evolvable. These results offer insights into the general principles for achieving evolvability and may prove to be an important step forward in the pursuit of evolvable representations in evolutionary computation.