Belyaev, Mikhail
Medical Semantic Segmentation with Diffusion Pretrain
Li, David, Kurmukov, Anvar, Goncharov, Mikhail, Sokolov, Roman, Belyaev, Mikhail
Recent advances in deep learning have shown that learning robust feature representations is critical for the success of many computer vision tasks, including medical image segmentation. In particular, both transformer and convolutional-based architectures have benefit from leveraging pretext tasks for pretraining. However, the adoption of pretext tasks in 3D medical imaging has been less explored and remains a challenge, especially in the context of learning generalizable feature representations. We propose a novel pretraining strategy using diffusion models with anatomical guidance, tailored to the intricacies of 3D medical image data. We introduce an auxiliary diffusion process to pretrain a model that produce generalizable feature representations, useful for a variety of downstream segmentation tasks. We employ an additional model that predicts 3D universal body-part coordinates, providing guidance during the diffusion process and improving spatial awareness in generated representations. This approach not only aids in resolving localization inaccuracies but also enriches the model's ability to understand complex anatomical structures. Empirical validation on a 13-class organ segmentation task demonstrate the effectiveness of our pretraining technique. It surpasses existing restorative pretraining methods in 3D medical image segmentation by $7.5\%$, and is competitive with the state-of-the-art contrastive pretraining approach, achieving an average Dice coefficient of 67.8 in a non-linear evaluation scenario.
Hierarchical Loss And Geometric Mask Refinement For Multilabel Ribs Segmentation
Leonov, Aleksei, Zakharov, Aleksei, Koshelev, Sergey, Pisov, Maxim, Kurmukov, Anvar, Belyaev, Mikhail
Automatic ribs segmentation and numeration can increase computed tomography assessment speed and reduce radiologists mistakes. We introduce a model for multilabel ribs segmentation with hierarchical loss function, which enable to improve multilabel segmentation quality. Also we propose postprocessing technique to further increase labeling quality. Our model achieved new state-of-the-art 98.2% label accuracy on public RibSeg v2 dataset, surpassing previous result by 6.7%.
Redesigning Out-of-Distribution Detection on 3D Medical Images
Vasiliuk, Anton, Frolova, Daria, Belyaev, Mikhail, Shirokikh, Boris
Detecting out-of-distribution (OOD) samples for trusted medical image segmentation remains a significant challenge. The critical issue here is the lack of a strict definition of abnormal data, which often results in artificial problem settings without measurable clinical impact. In this paper, we redesign the OOD detection problem according to the specifics of volumetric medical imaging and related downstream tasks (e.g., segmentation). We propose using the downstream model's performance as a pseudometric between images to define abnormal samples. This approach enables us to weigh different samples based on their performance impact without an explicit ID/OOD distinction. We incorporate this weighting in a new metric called Expected Performance Drop (EPD). EPD is our core contribution to the new problem design, allowing us to rank methods based on their clinical impact. We demonstrate the effectiveness of EPD-based evaluation in 11 CT and MRI OOD detection challenges.
Predicting Conversion of Mild Cognitive Impairments to Alzheimer's Disease and Exploring Impact of Neuroimaging
Shmulev, Yaroslav, Belyaev, Mikhail
Nowadays, a lot of scientific efforts are concentrated on the diagnosis of Alzheimer's Disease (AD) applying deep learning methods to neuroimaging data. Even for 2017, there were published more than a hundred papers dedicated to AD diagnosis, whereas only a few works considered a problem of mild cognitive impairments (MCI) conversion to the AD. However, the conversion prediction is an important problem since approximately 15% of patients with MCI converges to the AD every year. In the current work, we are focusing on the conversion prediction using brain Magnetic Resonance Imaging and clinical data, such as demographics, cognitive assessments, genetic, and biochemical markers. First of all, we applied state-of-the-art deep learning algorithms on the neuroimaging data and compared these results with two machine learning algorithms that we fit using the clinical data. As a result, the models trained on the clinical data outperform the deep learning algorithms applied to the MR images. To explore the impact of neuroimaging further, we trained a deep feed-forward embedding using similarity learning with Histogram loss on all available MRIs and obtained 64-dimensional vector representation of neuroimaging data. The use of learned representation from the deep embedding allowed to increase the quality of prediction based on the neuroimaging. Finally, the current results on this dataset show that the neuroimaging does affect conversion prediction, however, cannot noticeably increase the quality of the prediction. The best results of predicting MCI-to-AD conversion are provided by XGBoost algorithm trained on the clinical and embedding data. The resulting accuracy is 0.76 +- 0.01 and the area under the ROC curve - 0.86 +- 0.01.
GTApprox: surrogate modeling for industrial design
Belyaev, Mikhail, Burnaev, Evgeny, Kapushev, Ermek, Panov, Maxim, Prikhodko, Pavel, Vetrov, Dmitry, Yarotsky, Dmitry
We describe GTApprox - a new tool for medium-scale surrogate modeling in industrial design. Compared to existing software, GTApprox brings several innovations: a few novel approximation algorithms, several advanced methods of automated model selection, novel options in the form of hints. We demonstrate the efficiency of GTApprox on a large collection of test problems. In addition, we describe several applications of GTApprox to real engineering problems.