Belkin, Mikhail
Diving into the shallows: a computational perspective on large-scale shallow learning
MA, SIYUAN, Belkin, Mikhail
Remarkable recent success of deep neural networks has not been easy to analyze theoretically. It has been particularly hard to disentangle relative significance of architecture and optimization in achieving accurate classification on large datasets. On the flip side, shallow methods (such as kernel methods) have encountered obstacles in scaling to large data, despite excellent performance on smaller datasets, and extensive theoretical analysis. Practical methods, such as variants of gradient descent used so successfully in deep learning, seem to perform below par when applied to kernel methods. This difficulty has sometimes been attributed to the limitations of shallow architecture. In this paper we identify a basic limitation in gradient descent-based optimization methods when used in conjunctions with smooth kernels. Our analysis demonstrates that only a vanishingly small fraction of the function space is reachable after a polynomial number of gradient descent iterations. That drastically limits the approximating power of gradient descent leading to over-regularization. The issue is purely algorithmic, persisting even in the limit of infinite data. To address this shortcoming in practice, we introduce EigenPro iteration, a simple and direct preconditioning scheme using a small number of approximately computed eigenvectors. It can also be viewed as learning a kernel optimized for gradient descent. Injecting this small, computationally inexpensive and SGD-compatible, amount of approximate second-order information leads to major improvements in convergence. For large data, this leads to a significant performance boost over the state-of-the-art kernel methods. In particular, we are able to match or improve the results reported in the literature at a small fraction of their computational budget. For complete version of this paper see https://arxiv.org/abs/1703.10622.
Unperturbed: spectral analysis beyond Davis-Kahan
Eldridge, Justin, Belkin, Mikhail, Wang, Yusu
Classical matrix perturbation results, such as Weyl's theorem for eigenvalues and the Davis-Kahan theorem for eigenvectors, are general purpose. These classical bounds are tight in the worst case, but in many settings sub-optimal in the typical case. In this paper, we present perturbation bounds which consider the nature of the perturbation and its interaction with the unperturbed structure in order to obtain significant improvements over the classical theory in many scenarios, such as when the perturbation is random. We demonstrate the utility of these new results by analyzing perturbations in the stochastic blockmodel where we derive much tighter bounds than provided by the classical theory. We use our new perturbation theory to show that a very simple and natural clustering algorithm -- whose analysis was difficult using the classical tools -- nevertheless recovers the communities of the blockmodel exactly even in very sparse graphs.
Diving into the shallows: a computational perspective on large-scale shallow learning
Ma, Siyuan, Belkin, Mikhail
In this paper we first identify a basic limitation in gradient descent-based optimization methods when used in conjunctions with smooth kernels. An analysis based on the spectral properties of the kernel demonstrates that only a vanishingly small portion of the function space is reachable after a polynomial number of gradient descent iterations. This lack of approximating power drastically limits gradient descent for a fixed computational budget leading to serious over-regularization/underfitting. The issue is purely algorithmic, persisting even in the limit of infinite data. To address this shortcoming in practice, we introduce EigenPro iteration, based on a preconditioning scheme using a small number of approximately computed eigenvectors. It can also be viewed as learning a new kernel optimized for gradient descent. It turns out that injecting this small (computationally inexpensive and SGD-compatible) amount of approximate second-order information leads to major improvements in convergence. For large data, this translates into significant performance boost over the standard kernel methods. In particular, we are able to consistently match or improve the state-of-the-art results recently reported in the literature with a small fraction of their computational budget. Finally, we feel that these results show a need for a broader computational perspective on modern large-scale learning to complement more traditional statistical and convergence analyses. In particular, many phenomena of large-scale high-dimensional inference are best understood in terms of optimization on infinite dimensional Hilbert spaces, where standard algorithms can sometimes have properties at odds with finite-dimensional intuition. A systematic analysis concentrating on the approximation power of such algorithms within a budget of computation may lead to progress both in theory and practice.
Graphons, mergeons, and so on!
Eldridge, Justin, Belkin, Mikhail, Wang, Yusu
In this work we develop a theory of hierarchical clustering for graphs. Our modeling assumption is that graphs are sampled from a graphon, which is a powerful and general model for generating graphs and analyzing large networks. Graphons are a far richer class of graph models than stochastic blockmodels, the primary setting for recent progress in the statistical theory of graph clustering. We define what it means for an algorithm to produce the "correct" clustering, give sufficient conditions in which a method is statistically consistent, and provide an explicit algorithm satisfying these properties.
Clustering with Bregman Divergences: an Asymptotic Analysis
Liu, Chaoyue, Belkin, Mikhail
Clustering, in particular $k$-means clustering, is a central topic in data analysis. Clustering with Bregman divergences is a recently proposed generalization of $k$-means clustering which has already been widely used in applications. In this paper we analyze theoretical properties of Bregman clustering when the number of the clusters $k$ is large. We establish quantization rates and describe the limiting distribution of the centers as $k\to \infty$, extending well-known results for $k$-means clustering.
Graphons, mergeons, and so on!
Eldridge, Justin, Belkin, Mikhail, Wang, Yusu
In this work we develop a theory of hierarchical clustering for graphs. Our modelling assumption is that graphs are sampled from a graphon, which is a powerful and general model for generating graphs and analyzing large networks. Graphons are a far richer class of graph models than stochastic blockmodels, the primary setting for recent progress in the statistical theory of graph clustering. We define what it means for an algorithm to produce the ``correct" clustering, give sufficient conditions in which a method is statistically consistent, and provide an explicit algorithm satisfying these properties.
The Hidden Convexity of Spectral Clustering
Voss, James, Belkin, Mikhail, Rademacher, Luis
In recent years, spectral clustering has become a standard method for data analysis used in a broad range of applications. In this paper we propose a new class of algorithms for multiway spectral clustering based on optimization of a certain "contrast function" over the unit sphere. These algorithms, partly inspired by certain Independent Component Analysis techniques, are simple, easy to implement and efficient. Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization. We give a complete characterization of the contrast functions admissible for provable basis recovery. We show how these conditions can be interpreted as a "hidden convexity" of our optimization problem on the sphere; interestingly, we use efficient convex maximization rather than the more common convex minimization. We also show encouraging experimental results on real and simulated data.
The Hidden Convexity of Spectral Clustering
Voss, James (Ohio State University) | Belkin, Mikhail (Ohio State University) | Rademacher, Luis (Ohio State University)
In recent years, spectral clustering has become a standard method for data analysis used in a broad range of applications. In this paper we propose a new class of algorithms for multiway spectral clustering based on optimization of a certain "contrast function" over the unit sphere. These algorithms, partly inspired by certain Indepenent Component Analysis techniques, are simple, easy to implement and efficient. Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization. We give a complete characterization of the contrast functions admissible for provable basis recovery. We show how these conditions can be interpreted as a "hidden convexity" of our optimization problem on the sphere; interestingly, we use efficient convex maximization rather than the more common convex minimization. We also show encouraging experimental results on real and simulated data.
A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA
Voss, James R., Belkin, Mikhail, Rademacher, Luis
Independent Component Analysis (ICA) is a popular model for blind signal separation. The ICA model assumes that a number of independent source signals are linearly mixed to form the observed signals. We propose a new algorithm, PEGI (for pseudo-Euclidean Gradient Iteration), for provable model recovery for ICA with Gaussian noise. The main technical innovation of the algorithm is to use a fixed point iteration in a pseudo-Euclidean (indefinite “inner product”) space. The use of this indefinite “inner product” resolves technical issues common to several existing algorithms for noisy ICA. This leads to an algorithm which is conceptually simple, efficient and accurate in testing.Our second contribution is combining PEGI with the analysis of objectives for optimal recovery in the noisy ICA model. It has been observed that the direct approach of demixing with the inverse of the mixing matrix is suboptimal for signal recovery in terms of the natural Signal to Interference plus Noise Ratio (SINR) criterion. There have been several partial solutions proposed in the ICA literature. It turns out that any solution to the mixing matrix reconstruction problem can be used to construct an SINR-optimal ICA demixing, despite the fact that SINR itself cannot be computed from data. That allows us to obtain a practical and provably SINR-optimal recovery method for ICA with arbitrary Gaussian noise.
A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA
Voss, James, Belkin, Mikhail, Rademacher, Luis
Independent Component Analysis (ICA) is a popular model for blind signal separation. The ICA model assumes that a number of independent source signals are linearly mixed to form the observed signals. We propose a new algorithm, PEGI (for pseudo-Euclidean Gradient Iteration), for provable model recovery for ICA with Gaussian noise. The main technical innovation of the algorithm is to use a fixed point iteration in a pseudo-Euclidean (indefinite "inner product") space. The use of this indefinite "inner product" resolves technical issues common to several existing algorithms for noisy ICA. This leads to an algorithm which is conceptually simple, efficient and accurate in testing. Our second contribution is combining PEGI with the analysis of objectives for optimal recovery in the noisy ICA model. It has been observed that the direct approach of demixing with the inverse of the mixing matrix is suboptimal for signal recovery in terms of the natural Signal to Interference plus Noise Ratio (SINR) criterion. There have been several partial solutions proposed in the ICA literature. It turns out that any solution to the mixing matrix reconstruction problem can be used to construct an SINR-optimal ICA demixing, despite the fact that SINR itself cannot be computed from data. That allows us to obtain a practical and provably SINR-optimal recovery method for ICA with arbitrary Gaussian noise.