Goto

Collaborating Authors

 Belabbas, Mohamed-Ali


Constructing Stochastic Matrices for Weighted Averaging in Gossip Networks

arXiv.org Artificial Intelligence

The convergence of the gossip process has been extensively studied; however, algorithms that generate a set of stochastic matrices, the infinite product of which converges to a rank-one matrix determined by a given weight vector, have been less explored. In this work, we propose an algorithm for constructing (local) stochastic matrices based on a given gossip network topology and a set of weights for averaging across different consensus clusters, ensuring that the gossip process converges to a finite limit set.


Control Theoretic Approach to Fine-Tuning and Transfer Learning

arXiv.org Artificial Intelligence

Given a training set in the form of a paired $(\mathcal{X},\mathcal{Y})$, we say that the control system $\dot x = f(x,u)$ has learned the paired set via the control $u^*$ if the system steers each point of $\mathcal{X}$ to its corresponding target in $\mathcal{Y}$. If the training set is expanded, most existing methods for finding a new control $u^*$ require starting from scratch, resulting in a quadratic increase in complexity with the number of points. To overcome this limitation, we introduce the concept of $\textit{ tuning without forgetting}$. We develop $\textit{an iterative algorithm}$ to tune the control $u^*$ when the training set expands, whereby points already in the paired set are still matched, and new training samples are learned. At each update of our method, the control $u^*$ is projected onto the kernel of the end-point mapping generated by the controlled dynamics at the learned samples. It ensures keeping the end-points for the previously learned samples constant while iteratively learning additional samples.


Vision-Based Shape Reconstruction of Soft Continuum Arms Using a Geometric Strain Parametrization

arXiv.org Artificial Intelligence

Interest in soft continuum arms has increased as their inherent material elasticity enables safe and adaptive interactions with the environment. However to achieve full autonomy in these arms, accurate three-dimensional shape sensing is needed. Vision-based solutions have been found to be effective in estimating the shape of soft continuum arms. In this paper, a vision-based shape estimator that utilizes a geometric strain based representation for the soft continuum arm's shape, is proposed. This representation reduces the dimension of the curved shape to a finite set of strain basis functions, thereby allowing for efficient optimization for the shape that best fits the observed image. Experimental results demonstrate the effectiveness of the proposed approach in estimating the end effector with accuracy less than the soft arm's radius. Multiple basis functions are also analyzed and compared for the specific soft continuum arm in use.


On landmark selection and sampling in high-dimensional data analysis

arXiv.org Machine Learning

In recent years, the spectral analysis of appropriately defined kernel matrices has emerged as a principled way to extract the low-dimensional structure often prevalent in high-dimensional data. Here we provide an introduction to spectral methods for linear and nonlinear dimension reduction, emphasizing ways to overcome the computational limitations currently faced by practitioners with massive datasets. In particular, a data subsampling or landmark selection process is often employed to construct a kernel based on partial information, followed by an approximate spectral analysis termed the Nystrom extension. We provide a quantitative framework to analyse this procedure, and use it to demonstrate algorithmic performance bounds on a range of practical approaches designed to optimize the landmark selection process. We compare the practical implications of these bounds by way of real-world examples drawn from the field of computer vision, whereby low-dimensional manifold structure is shown to emerge from high-dimensional video data streams.