Beksi, William J.
Few-Shot Fruit Segmentation via Transfer Learning
James, Jordan A., Manching, Heather K., Hulse-Kemp, Amanda M., Beksi, William J.
Advancements in machine learning, computer vision, and robotics have paved the way for transformative solutions in various domains, particularly in agriculture. For example, accurate identification and segmentation of fruits from field images plays a crucial role in automating jobs such as harvesting, disease detection, and yield estimation. However, achieving robust and precise infield fruit segmentation remains a challenging task since large amounts of labeled data are required to handle variations in fruit size, shape, color, and occlusion. In this paper, we develop a few-shot semantic segmentation framework for infield fruits using transfer learning. Concretely, our work is aimed at addressing agricultural domains that lack publicly available labeled data. Motivated by similar success in urban scene parsing, we propose specialized pre-training using a public benchmark dataset for fruit transfer learning. By leveraging pre-trained neural networks, accurate semantic segmentation of fruit in the field is achieved with only a few labeled images. Furthermore, we show that models with pre-training learn to distinguish between fruit still on the trees and fruit that have fallen on the ground, and they can effectively transfer the knowledge to the target fruit dataset.
A Human-Centered Approach for Bootstrapping Causal Graph Creation
Tram, Minh Q., Gutierrez, Nolan B., Beksi, William J.
Causal inference, a cornerstone in disciplines such as economics, genomics, and medicine, is increasingly being recognized as fundamental to advancing the field of robotics. In particular, the ability to reason about cause and effect from observational data is crucial for robust generalization in robotic systems. However, the construction of a causal graphical model, a mechanism for representing causal relations, presents an immense challenge. Currently, a nuanced grasp of causal inference, coupled with an understanding of causal relationships, must be manually programmed into a causal graphical model. To address this difficulty, we present initial results towards a human-centered augmented reality framework for creating causal graphical models. Concretely, our system bootstraps the causal discovery process by involving humans in selecting variables, establishing relationships, performing interventions, generating counterfactual explanations, and evaluating the resulting causal graph at every step. We highlight the potential of our framework via a physical robot manipulator on a pick-and-place task.
CitDet: A Benchmark Dataset for Citrus Fruit Detection
James, Jordan A., Manching, Heather K., Mattia, Matthew R., Bowman, Kim D., Hulse-Kemp, Amanda M., Beksi, William J.
In this letter, we present a new dataset to advance the state of the art in detecting citrus fruit and accurately estimate yield on trees affected by the Huanglongbing (HLB) disease in orchard environments via imaging. Despite the fact that significant progress has been made in solving the fruit detection problem, the lack of publicly available datasets has complicated direct comparison of results. For instance, citrus detection has long been of interest in the agricultural research community, yet there is an absence of work, particularly involving public datasets of citrus affected by HLB. To address this issue, we enhance state-of-the-art object detection methods for use in typical orchard settings. Concretely, we provide high-resolution images of citrus trees located in an area known to be highly affected by HLB, along with high-quality bounding box annotations of citrus fruit. Fruit on both the trees and the ground are labeled to allow for identification of fruit location, which contributes to advancements in yield estimation and potential measure of HLB impact via fruit drop. The dataset consists of over 32,000 bounding box annotations for fruit instances contained in 579 high-resolution images. In summary, our contributions are the following: (i) we introduce a novel dataset along with baseline performance benchmarks on multiple contemporary object detection algorithms, (ii) we show the ability to accurately capture fruit location on tree or on ground, and finally (ii) we present a correlation of our results with yield estimations.
Intuitive Robot Integration via Virtual Reality Workspaces
Tram, Minh Q., Cloud, Joseph M., Beksi, William J.
As robots become increasingly prominent in diverse industrial settings, the desire for an accessible and reliable system has correspondingly increased. Yet, the task of meaningfully assessing the feasibility of introducing a new robotic component, or adding more robots into an existing infrastructure, remains a challenge. This is due to both the logistics of acquiring a robot and the need for expert knowledge in setting it up. In this paper, we address these concerns by developing a purely virtual simulation of a robotic system. Our proposed framework enables natural human-robot interaction through a visually immersive representation of the workspace. The main advantages of our approach are the following: (i) independence from a physical system, (ii) flexibility in defining the workspace and robotic tasks, and (iii) an intuitive interaction between the operator and the simulated environment. Not only does our system provide an enhanced understanding of 3D space to the operator, but it also encourages a hands-on way to perform robot programming. We evaluate the effectiveness of our method in applying novel automation assignments by training a robot in virtual reality and then executing the task on a real robot.
Learning the Next Best View for 3D Point Clouds via Topological Features
Collander, Christopher, Beksi, William J., Huber, Manfred
In this paper, we introduce a reinforcement learning approach utilizing a novel topology-based information gain metric for directing the next best view of a noisy 3D sensor. The metric combines the disjoint sections of an observed surface to focus on high-detail features such as holes and concave sections. Experimental results show that our approach can aid in establishing the placement of a robotic sensor to optimize the information provided by its streaming point cloud data. Furthermore, a labeled dataset of 3D objects, a CAD design for a custom robotic manipulator, and software for the transformation, union, and registration of point clouds has been publicly released to the research community.
A Progressive Conditional Generative Adversarial Network for Generating Dense and Colored 3D Point Clouds
Arshad, Mohammad Samiul, Beksi, William J.
In this paper, we introduce a novel conditional generative adversarial network that creates dense 3D point clouds, with color, for assorted classes of objects in an unsupervised manner. To overcome the difficulty of capturing intricate details at high resolutions, we propose a point transformer that progressively grows the network through the use of graph convolutions. The network is composed of a leaf output layer and an initial set of branches. Every training iteration evolves a point vector into a point cloud of increasing resolution. After a fixed number of iterations, the number of branches is increased by replicating the last branch. Experimental results show that our network is capable of learning and mimicking a 3D data distribution, and produces colored point clouds with fine details at multiple resolutions.