Goto

Collaborating Authors

 Beichter, Maximilian


Decision-Focused Fine-Tuning of Time Series Foundation Models for Dispatchable Feeder Optimization

arXiv.org Machine Learning

Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems. Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality. In contrast, decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality. The practical integration of forecast values into forecasting models is challenging, particularly when addressing complex applications with diverse instances, such as buildings. This becomes even more complicated when instances possess specific characteristics that require instance-specific, tailored predictions to increase the forecast value. To tackle this challenge, we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem. To obtain more robust predictions for scarce building data, we use Moirai as a state-of-the-art foundation model, which offers robust and generalized results with few-shot parameter-efficient fine-tuning. Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Morai, we observe an improvement of 9.45% in average total daily costs.


On autoregressive deep learning models for day-ahead wind power forecasting with irregular shutdowns due to redispatching

arXiv.org Machine Learning

Renewable energies and their operation are becoming increasingly vital for the stability of electrical power grids since conventional power plants are progressively being displaced, and their contribution to redispatch interventions is thereby diminishing. In order to consider renewable energies like Wind Power (WP) for such interventions as a substitute, day-ahead forecasts are necessary to communicate their availability for redispatch planning. In this context, automated and scalable forecasting models are required for the deployment to thousands of locally-distributed onshore WP turbines. Furthermore, the irregular interventions into the WP generation capabilities due to redispatch shutdowns pose challenges in the design and operation of WP forecasting models. Since state-of-the-art forecasting methods consider past WP generation values alongside day-ahead weather forecasts, redispatch shutdowns may impact the forecast. Therefore, the present paper highlights these challenges and analyzes state-of-the-art forecasting methods on data sets with both regular and irregular shutdowns. Specifically, we compare the forecasting accuracy of three autoregressive Deep Learning (DL) methods to methods based on WP curve modeling. Interestingly, the latter achieve lower forecasting errors, have fewer requirements for data cleaning during modeling and operation while being computationally more efficient, suggesting their advantages in practical applications.


Transformer Training Strategies for Forecasting Multiple Load Time Series

arXiv.org Artificial Intelligence

In the smart grid of the future, accurate load forecasts on the level of individual clients can help to balance supply and demand locally and to prevent grid outages. While the number of monitored clients will increase with the ongoing smart meter rollout, the amount of data per client will always be limited. We evaluate whether a Transformer load forecasting model benefits from a transfer learning strategy, where a global univariate model is trained on the load time series from multiple clients. In experiments with two datasets containing load time series from several hundred clients, we find that the global training strategy is superior to the multivariate and local training strategies used in related work. On average, the global training strategy results in 21.8% and 12.8% lower forecasting errors than the two other strategies, measured across forecasting horizons from one day to one month into the future. A comparison to linear models, multi-layer perceptrons and LSTMs shows that Transformers are effective for load forecasting when they are trained with the global training strategy.