Bei, Yuanchen
A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models
Zhang, Qinggang, Chen, Shengyuan, Bei, Yuanchen, Yuan, Zheng, Zhou, Huachi, Hong, Zijin, Dong, Junnan, Chen, Hao, Chang, Yi, Huang, Xiao
Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in \textcolor{blue}{\url{https://github.com/DEEP-PolyU/Awesome-GraphRAG}}.
Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification
Bei, Yuanchen, Chen, Weizhi, Chen, Hao, Zhou, Sheng, Yang, Carl, Fan, Jiapei, Huang, Longtao, Bu, Jiajun
Multi-label node classification is an important yet under-explored domain in graph mining as many real-world nodes belong to multiple categories rather than just a single one. Although a few efforts have been made by utilizing Graph Convolution Networks (GCNs) to learn node representations and model correlations between multiple labels in the embedding space, they still suffer from the ambiguous feature and ambiguous topology induced by multiple labels, which reduces the credibility of the messages delivered in graphs and overlooks the label correlations on graph data. Therefore, it is crucial to reduce the ambiguity and empower the GCNs for accurate classification. However, this is quite challenging due to the requirement of retaining the distinctiveness of each label while fully harnessing the correlation between labels simultaneously. To address these issues, in this paper, we propose a Correlation-aware Graph Convolutional Network (CorGCN) for multi-label node classification. By introducing a novel Correlation-Aware Graph Decomposition module, CorGCN can learn a graph that contains rich label-correlated information for each label. It then employs a Correlation-Enhanced Graph Convolution to model the relationships between labels during message passing to further bolster the classification process. Extensive experiments on five datasets demonstrate the effectiveness of our proposed CorGCN.
Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap
Zhang, Weizhi, Bei, Yuanchen, Yang, Liangwei, Zou, Henry Peng, Zhou, Peilin, Liu, Aiwei, Li, Yinghui, Chen, Hao, Wang, Jianling, Wang, Yu, Huang, Feiran, Zhou, Sheng, Bu, Jiajun, Lin, Allen, Caverlee, James, Karray, Fakhri, King, Irwin, Yu, Philip S.
Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Dong, Junnan, Hong, Zijin, Bei, Yuanchen, Huang, Feiran, Wang, Xinrun, Huang, Xiao
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. Q$\rightarrow$A is utilized to measure the performance of direct answer prediction, and Q$\rightarrow$AR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% Q$\rightarrow$A to 39.00% Q$\rightarrow$AR, indicating an unsatisfactory reasoning ability.
Better Late Than Never: Formulating and Benchmarking Recommendation Editing
Lai, Chengyu, Zhou, Sheng, Jiang, Zhimeng, Tan, Qiaoyu, Bei, Yuanchen, Chen, Jiawei, Zhang, Ningyu, Bu, Jiajun
Recommendation systems play a pivotal role in suggesting items to users based on their preferences. However, in online platforms, these systems inevitably offer unsuitable recommendations due to limited model capacity, poor data quality, or evolving user interests. Enhancing user experience necessitates efficiently rectify such unsuitable recommendation behaviors. This paper introduces a novel and significant task termed recommendation editing, which focuses on modifying known and unsuitable recommendation behaviors. Specifically, this task aims to adjust the recommendation model to eliminate known unsuitable items without accessing training data or retraining the model. We formally define the problem of recommendation editing with three primary objectives: strict rectification, collaborative rectification, and concentrated rectification. Three evaluation metrics are developed to quantitatively assess the achievement of each objective. We present a straightforward yet effective benchmark for recommendation editing using novel Editing Bayesian Personalized Ranking Loss. To demonstrate the effectiveness of the proposed method, we establish a comprehensive benchmark that incorporates various methods from related fields. Codebase is available at https://github.com/cycl2018/Recommendation-Editing.
Revisiting the Message Passing in Heterophilous Graph Neural Networks
Zheng, Zhuonan, Bei, Yuanchen, Zhou, Sheng, Ma, Yao, Gu, Ming, XU, HongJia, Lai, Chengyu, Chen, Jiawei, Bu, Jiajun
Graph Neural Networks (GNNs) have demonstrated strong performance in graph mining tasks due to their message-passing mechanism, which is aligned with the homophily assumption that adjacent nodes exhibit similar behaviors. However, in many real-world graphs, connected nodes may display contrasting behaviors, termed as heterophilous patterns, which has attracted increased interest in heterophilous GNNs (HTGNNs). Although the message-passing mechanism seems unsuitable for heterophilous graphs due to the propagation of class-irrelevant information, it is still widely used in many existing HTGNNs and consistently achieves notable success. This raises the question: why does message passing remain effective on heterophilous graphs? To answer this question, in this paper, we revisit the message-passing mechanisms in heterophilous graph neural networks and reformulate them into a unified heterophilious message-passing (HTMP) mechanism. Based on HTMP and empirical analysis, we reveal that the success of message passing in existing HTGNNs is attributed to implicitly enhancing the compatibility matrix among classes. Moreover, we argue that the full potential of the compatibility matrix is not completely achieved due to the existence of incomplete and noisy semantic neighborhoods in real-world heterophilous graphs. To bridge this gap, we introduce a new approach named CMGNN, which operates within the HTMP mechanism to explicitly leverage and improve the compatibility matrix. A thorough evaluation involving 10 benchmark datasets and comparative analysis against 13 well-established baselines highlights the superior performance of the HTMP mechanism and CMGNN method.
CPDG: A Contrastive Pre-Training Method for Dynamic Graph Neural Networks
Bei, Yuanchen, Xu, Hao, Zhou, Sheng, Chi, Huixuan, Wang, Haishuai, Zhang, Mengdi, Li, Zhao, Bu, Jiajun
Dynamic graph data mining has gained popularity in recent years due to the rich information contained in dynamic graphs and their widespread use in the real world. Despite the advances in dynamic graph neural networks (DGNNs), the rich information and diverse downstream tasks have posed significant difficulties for the practical application of DGNNs in industrial scenarios. To this end, in this paper, we propose to address them by pre-training and present the Contrastive Pre-Training Method for Dynamic Graph Neural Networks (CPDG). CPDG tackles the challenges of pre-training for DGNNs, including generalization capability and long-short term modeling capability, through a flexible structural-temporal subgraph sampler along with structural-temporal contrastive pre-training schemes. Extensive experiments conducted on both large-scale research and industrial dynamic graph datasets show that CPDG outperforms existing methods in dynamic graph pre-training for various downstream tasks under three transfer settings.
Alleviating Behavior Data Imbalance for Multi-Behavior Graph Collaborative Filtering
Zhang, Yijie, Bei, Yuanchen, Yang, Shiqi, Chen, Hao, Li, Zhiqing, Chen, Lijia, Huang, Feiran
Graph collaborative filtering, which learns user and item representations through message propagation over the user-item interaction graph, has been shown to effectively enhance recommendation performance. However, most current graph collaborative filtering models mainly construct the interaction graph on a single behavior domain (e.g. click), even though users exhibit various types of behaviors on real-world platforms, including actions like click, cart, and purchase. Furthermore, due to variations in user engagement, there exists an imbalance in the scale of different types of behaviors. For instance, users may click and view multiple items but only make selective purchases from a small subset of them. How to alleviate the behavior imbalance problem and utilize information from the multiple behavior graphs concurrently to improve the target behavior conversion (e.g. purchase) remains underexplored. To this end, we propose IMGCF, a simple but effective model to alleviate behavior data imbalance for multi-behavior graph collaborative filtering. Specifically, IMGCF utilizes a multi-task learning framework for collaborative filtering on multi-behavior graphs. Then, to mitigate the data imbalance issue, IMGCF improves representation learning on the sparse behavior by leveraging representations learned from the behavior domain with abundant data volumes. Experiments on two widely-used multi-behavior datasets demonstrate the effectiveness of IMGCF.